Skip to main content
Log in

Almost Sure Convergence of the Numerical Discretization of Stochastic Jump Diffusions

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Based on the shuffle product expansion of exponential Lie series in terms of a Philip Hall basis for the stochastic differential equations of jump-diffusion type, we can establish Stratonovich–Taylor–Hall (STH) schemes. However, the STHr scheme converges only at order r in the mean-square sense. In order to have the almost sure Stratonovich–Taylor–Hall (ASTH) schemes, we have to include all the terms related to multiple Poissonian integrals as the moments of multiple Poissonian integrals always have lower orders of magnitudes as compared with those of multiple Brownian integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben Arous, G.: Flots et séries de Taylor stochastiques, Probab. Theory Related Fields 81 (1989), 29–77.

    Google Scholar 

  2. Castell, F.: Asymptotic expansion of stochastic flows, Probab. Theory Related Fields 96(1993), 225–239.

    Google Scholar 

  3. Castell, F. and Gaines, J. G.: The ordinary differential equation approach to asymptotically ef-ficient schemes for solution of stochastic differential equations, Ann. Inst. H. Poincaré Probab. Statist. 32(1996), 231–250.

    Google Scholar 

  4. Fliess, M. and Normand-Cyrot, D.: Algèbres de Lie nilpotentes, formule de Baker–Campbell– Hausdorff et intégrales itérées de K. T. Chen, In: Séminaire de Probabilités XVI 1980/81, Lecture Notes in Math. 920, Springer, Berlin, 1982, pp. 257–267.

    Google Scholar 

  5. Gaines, J. G.: The algebra of iterated stochastic integrals. Stochastics Stochastics Rep. 49 (1994), 169–179.

    Google Scholar 

  6. Gaines, J. G. and Lyons, T. J.: Random generation of stochastic area integrals, SIAM J. Appl. Math. 54(1994), 1132–1146.

    Google Scholar 

  7. Gaines, J. G. and Lyons, T. J.: Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math. 57(1997), 1455–1484.

    Google Scholar 

  8. Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn, North-Holland, Amsterdam, 1989.

    Google Scholar 

  9. Kloeden, P. E. and Platen, E.: Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.

    Google Scholar 

  10. Li, C. W. and Liu, X. Q.: Algebraic structure of multiple stochastic integrals with respect to Brownian motions and Poisson processes, Stochastics Stochastics Rep. 61(1997), 107–120.

    Google Scholar 

  11. Liu, X. Q. and Li, C. W.: Discretization of stochastic differential equations by the product expansion for the Chen series, Stochastics Stochastics Rep. 60(1997), 23–40.

    Google Scholar 

  12. Liu, X. Q. and Li, C.W.: Product expansion for stochastic jump diffusion and its application to numerical approximation, J. Comput. Appl. Math. 108(1999), 1–17.

    Google Scholar 

  13. Maghsoodi, Y. and Harris, C. J.: In-probability approximation and simulation of nonlinear jump-diffusion stochastic differential equations, IMA J.Math. Control Inform. 4(1987), 65–92.

    Google Scholar 

  14. Mikulevičcius, R. and Platen, E.: Time discrete Taylor approximation for Itô processes with jump component, Math. Nachr. 138(1988), 93–104.

    Google Scholar 

  15. Milstein, G. N.: Numerical Integration of Stochastic Differential Equations, Kluwer Acad. Publ., Dordrecht, 1995.

    Google Scholar 

  16. Newton, N. J.: An asymptotically efficient difference formula for solving stochastic differential equations, Stochastics 19(1986), 175–206.

    Google Scholar 

  17. Pardoux, E. and Talay, D.: Discretization and simulation of stochastic differential equations, Acta Appl. Math. 3(1985), 23–47.

    Google Scholar 

  18. Platen, E.: An approximation method for a class of ItOo processes with jump component, Lietuvos Matem. Rinkinys 22(1982), 124–136.

    Google Scholar 

  19. Reutenauer, C.: Free Lie Algebras, Clarendon Press, Oxford, 1993.

    Google Scholar 

  20. Strichartz, R. S.: The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations, J. Funct. Anal. 72(1987), 320–345.

    Google Scholar 

  21. Sussmann, H. J.: Product expansions of exponential Lie series and the discretization of stochastic differential equations, In:W. Fleming and P. L. Lions(eds), Stochastic Differential Systems, Stochastic Control Theory and Applications, Springer, New York, 1988, pp. 563–582.

    Google Scholar 

  22. Talay, D.: Simulation of stochastic differential systems, In: P. Krée and W. Wedig(eds), Probabilistic Methods in Applied Physics, Lecture Notes in Phys. 451, Springer, Berlin, 1995, pp. 54–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C.W., Liu, X.Q. Almost Sure Convergence of the Numerical Discretization of Stochastic Jump Diffusions. Acta Applicandae Mathematicae 62, 225–244 (2000). https://doi.org/10.1023/A:1006495115904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006495115904

Navigation