Skip to main content
Log in

Rational interpolation through the optimal attachment of poles to the interpolating polynomial

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

After recalling some pitfalls of polynomial interpolation (in particular, slopes limited by Markov's inequality) and rational interpolation (e.g., unattainable points, poles in the interpolation interval, erratic behavior of the error for small numbers of nodes), we suggest an alternative for the case when the function to be interpolated is known everywhere, not just at the nodes. The method consists in replacing the interpolating polynomial with a rational interpolant whose poles are all prescribed, written in its barycentric form as in [4], and optimizing the placement of the poles in such a way as to minimize a chosen norm of the error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ahlfors, Complex Analysis, 2nd ed. (McGraw-Hill, New York, 1966).

    Google Scholar 

  2. K.E. Atkinson, An Introduction to Numerical Analysis, 2nd ed. (Wiley, New York, 1978).

    Google Scholar 

  3. R. Baltensperger and J.-P. Berrut, The linear rational collocation method, to appear in J. Comput. Appl. Math.

  4. J.-P. Berrut, The barycentric weights of rational interpolation with prescribed poles, J. Comput. Appl. Math. 86 (1997) 45-52.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-P. Berrut and H. Mittelmann, Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl. 33 (1997) 77-86.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.-P. Berrut and H. Mittelmann, Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-P. Berrut and H. Mittelmann, The linear rational collocation method with iteratively optimized poles for two-point boundary value problems, submitted for publication.

  8. R. Bulirsch and H. Rutishauser, Interpolation und genä herte Quadratur, in: Mathematische Hilfsmittel des Ingenieurs, eds. R. Sauer and I. Szabó , Grundlehren der Mathematischen Wissenschaften, Vol. 141 (Springer, Berlin/Heidelberg, 1968) pp. 232-319.

    Google Scholar 

  9. A. Corana, M. Marchesi, C. Martini and S. Ridella, Minimizing multimodal functions of continuous variables with the “Simulated Annealing” algorithm, ACM Trans. Math. Software 13 (1987) 262-280.

    Article  MATH  MathSciNet  Google Scholar 

  10. P.R. Graves-Morris, Efficient reliable rational interpolation, in: Padé Approximation and its Applications, Amsterdam (1980) eds. M.G. de Bruin and H. van Rossum, Lecture Notes in Mathematics, Vol. 888 (Springer, Berlin, 1981) pp. 28-63. 328 J.-P. Berrut, H.D. Mittelmann / Rational interpolation

    Google Scholar 

  11. P. Hemker, A Numerical Study of Stiff Two-Point Boundary Problems (Math. Centrum, Amsterdam, 1977).

    Google Scholar 

  12. P. Henrici, Essentials of Numerical Analysis (Wiley, New York, 1982).

    Google Scholar 

  13. P. Henrici, Applied and Computational Complex Analysis, Vol. 1 (Wiley, New York, 1974).

    Google Scholar 

  14. E.H. Kaufman, Jr., D.J. Leeming and G.D. Taylor, Uniform rational approximation by differential correction and Remes-differential correction, Internat. J. Numer. Methods Engrg. 17 (1981) 1273-1278.

    Article  MATH  MathSciNet  Google Scholar 

  15. Matlab Robust Control User's Guide (The Mathworks, Natick, MA, 1999).

  16. T.J. Rivlin, An Introduction to the Approximation of Functions (Dover, New York, 1981).

    Google Scholar 

  17. H.E. Salzer, Lagrangian interpolation at the Chebyshev points x n,υ = cos(υπ/n), υ, = 0(1)n; some unnoted advantages, Comput. J. 15 (1972) 156-159.

    MATH  MathSciNet  Google Scholar 

  18. C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comp. 47 (1986) 285-299.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Stoer, Einfü hrung in die Numerische Mathematik I, 4th ed. (Springer, Berlin, 1972).

    Google Scholar 

  20. H. Werner, Algorithm 51: A reliable and numerically stable program for rational interpolation of Lagrange data, Computing 31 (1983) 269-286.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.L. Zhou, A.L. Tits and C.T. Lawrence, User's guide for FFSQP version 3.7: A FORTRAN code for solving optimization problems, possibly minimax, with general inequality constraints and linear equality constraints, generating feasible iterates, Technical Report TR-92-107r5, Institute for Systems Research, University of Maryland, College Park, MD (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrut, JP., Mittelmann, H.D. Rational interpolation through the optimal attachment of poles to the interpolating polynomial. Numerical Algorithms 23, 315–328 (2000). https://doi.org/10.1023/A:1019168504808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019168504808

Navigation