Skip to main content
Log in

Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assaad, F.F., Mayer, U., Lukowitz, W. and Jürgens, G. 1997. Cytokinesis in somatic plant cells. Plant Physiol. Biochem. 35: 177–184.

    Google Scholar 

  • Bögre, L., Zwerger, K., Meskiene, I., Binarova, P., Csizmadia, V., Planck, C., Wagner, E., Hirt, H. and Heberle-Bors, E. 1997. The cdc2Ms kinase is differently regulated in the cytoplasm and in the nucleus. Plant Physiol. 113: 841–852.

    PubMed  Google Scholar 

  • Burssens, S., Van Montagu, M. and Inzé, D. 1998. The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36: 9–19.

    Google Scholar 

  • Citterio, S., Sgorbati, S., Onelli, E., Gatti, M. and Piazza, E. 1997. Cyclin-dependent kinase-like proteins in pea nuclei: their presence and role in cell proliferation. Protoplasma 196: 34–44.

    Google Scholar 

  • Cohen, P., Holmes, C.F.B. and Tsukitani, Y. 1990. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem. Sci. 15: 98–102.

    PubMed  Google Scholar 

  • Colosanti, J., Cho, S.O., Wick, S. and Sundaresan, V. 1993. Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites. Plant Cell 5: 1101–1111.

    PubMed  Google Scholar 

  • Dahl, M., Meskiene, I., Bögre, L., Ha, D.T.C., Swoboda, I., Hubmann, R., Hirt, H. and Heberle-Bors, E. 1995. The D-type alfalfa cyclin gene cycMs-4 complements G1 phase of the cell cycle. Plant Cell 7: 1847–1857.

    Article  PubMed  Google Scholar 

  • Davies, P.J. 1995. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • De Veylder, L., Segers, G., Glab, N., Casteels, P., Van Montagu, M. and Inzé, D. 1997: The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Lett. 412: 446–452.

    PubMed  Google Scholar 

  • Doerner, P., Jørgensen, J.-E., You, R., Steppuhn, J. and Lamb, C. 1996. Control of root growth and development by cyclin expression. Nature 380: 520–523.

    PubMed  Google Scholar 

  • Dombrádi, V. 1997. Comparative analysis of Ser/Thr protein phosphatases. Trends Comp. Biochem. Physiol. 3: 23–48.

    Google Scholar 

  • Dudits, D., Magyar, Z, Deák, M., Mészáros, T., Miskolczi, P., Fehér, A., Brown, S., Kondorosi, É., Athanasiadis, A., Pongor, S., Bakó, L., Koncz, Cs. and Györgyey, J. 1998. Cyclin-dependent and calcium-dependent kinase families: response of cell division cycle to hormone and stress signals. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 21–45.

    Google Scholar 

  • Erdödi, B., Tóth, B., Hirano, K., Hirano, M., Hatshorne, D.J. and Gergely, P. 1995. Endothall thioanhydride inhibits protein phosphatases-1 and-2A in vivo. American Physiological Society C1176–C1184.

  • Ewen, M.E., Sluss, H.K., Sherr, C.J., Matsushime, H., Kato, J. and Livingstone, D.M. 1993. Functional interaction of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497.

    Article  PubMed  Google Scholar 

  • Felix, M.A., Cohen, P. and Karsenti, E. 1990. Cdc2 h1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of ocadaic acid. EMBO J. 9: 675–683.

    PubMed  Google Scholar 

  • Fisher, R.P. 1997. CDKs and cyclins in transition(s). Curr. Opin. Genet. Dev. 7: 32–38.

    PubMed  Google Scholar 

  • Hadwiger, J.A., Wittenberg, C., Mendenhall, M.D. and Reed, S.I. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell Biol. 9: 2034–2041.

    PubMed  Google Scholar 

  • Harper, J.W. and Elledge, S.J. 1996. Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev. 6: 56–64.

    PubMed  Google Scholar 

  • Hayles, J., Beach, D., Kurkacz, B. and Nurse, P. 1986. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol. Gen. Genet. 202: 291–293.

    PubMed  Google Scholar 

  • Hindley, J. and Phear, G.A. 1984. Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe: patterns of splicing and homology to protein kinases. Gene 31: 129–134.

    PubMed  Google Scholar 

  • Hirt, H., Mink, M., Pfosser, M., Bögre, L., Györgyey, J., Jonak, C., Gartner, A., Dudits, D. and Heberle-Bors, E. 1992. Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell 4: 1531–1538.

    Google Scholar 

  • Hunter, T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell 80: 225–236.

    Article  PubMed  Google Scholar 

  • James, P., Halladay, J. and Graig, E.A. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.

    PubMed  Google Scholar 

  • John, P.C.L., Zhang, K., Dong, C., Diederich, L. and Wightman, F. 1993. p34cdc2 related proteins in control of cell cycle progression: the switch between division and differentiation in tissue development and stimulation of division by auxin and cytokinin. Aust. J. Plant Physiol. 20: 503–526.

    Google Scholar 

  • Kumagai, A. and Dunphy, W.G. 1992. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70: 139–151.

    PubMed  Google Scholar 

  • Lees, E. 1995. Cyclin dependent kinase regulation. Curr. Opin. Cell Biol. 7: 773–780.

    PubMed  Google Scholar 

  • Lörincz, A.T. and Reed, S.I. 1984. Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes. Nature 307: 183–185.

    PubMed  Google Scholar 

  • Magyar, Z., Bakó, L., Bögre, L., Dedeoglu, D., Kapros, T. and Dudits, D. 1993. Active cdc2 genes and cell cycle phase-specific cdc2-related kinase complexes in hormone-stimulated alfalfa cells. Plant J. 4: 151–161.

    Google Scholar 

  • Magyar, Z., Mészáros, T., Miskolczi, P., Deák, M., Fehér, A., Brown, S., Kondorosi, É., Athanasiadis, A., Pongor, S., Bilgin, M., Bakó, L., Koncz, Cs. and Dudits, D. 1997. Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9: 223–225.

    Article  PubMed  Google Scholar 

  • McKibbin, R.S., Halford, N.G. and Francis, D. 1998. Expression of fission yeast cdc25 alters the frequency of lateral root formation in transgenic tobacco. Plant Mol. Biol. 36: 601–612.

    PubMed  Google Scholar 

  • Meskiene, I., Bögre, L., Dahl, M., Pirck, M., Ha, D.T.H., Swoboda, I., Heberle-Bors, E., Ammerer, G. and Hirt, H. 1995. cycMs3, a novel B-type alfalfa cyclin gene, is induced in the G0-to-G1 transition of the cell cycle. Plant Cell 7: 759–771.

    Article  PubMed  Google Scholar 

  • Millward, T.A., Zolnierowicz, S. and Hemmings, B.A. 1999. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24: 186–191.

    PubMed  Google Scholar 

  • Mironov, V., Van Montagu, M. and Inzé, D. 1999. Regulation of cell division in plants: an Arabidopsis perspective. Prog. Cell Cycle Res. 3: 24–41.

    Google Scholar 

  • Nakagami, H., Sekine, M., Murakami, H. and Shinmyo, A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro. Plant J. 18: 243–252.

    PubMed  Google Scholar 

  • Neufeld, T.P., de la Cruz, A.F.A., Johnston, L.A. and Edgar, B.A. 1998. Coordination of growth and cell division in the Drosophila wing. Cell 93: 1183–1193.

    PubMed  Google Scholar 

  • Okayama, H., Nagata, A., Jinno, S., Murakami, H., Tanaka, K. and Nakashima, N. 1996. Cell cycle control in fission yeast andmammals: identification of new regulatory mechanisms. Adv. Cancer Res. 69: 17–62.

    PubMed  Google Scholar 

  • Osmani, S.A. and Ye, X.S. 1997. Targets of checkpoints controlling mitosis: lessons from lower eukaryotes. Trends Cell Biol. 7: 283–288.

    Google Scholar 

  • Pines, J. 1995. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308: 697–711.

    PubMed  Google Scholar 

  • Renaudin, J.P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inzé, D., Jacobs, T., Kouchi, H., Rouzé, P., Sauter, M., Savouré, A., Sorrell, D.A., Sundaresan, V. and Murray, J.A.H. 1996. Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003–1018.

    PubMed  Google Scholar 

  • Renaudin, J.P., Savouré, A., Philippe, H., Van Montagu, M., Inzé, D. and Rouzé, P. 1998. Characterization and classification of plant cyclin sequences related to A-and B-type cyclins. In: D. Francis, D. Dudits and D. Inzé (Eds.), Plant Cell Division, Portland Press, London, pp. 67–98.

    Google Scholar 

  • Riou-Khamlichi, C., Huntley, R., Jacqmard, A. and Murray, J.A.H. 1999. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541–1544.

    PubMed  Google Scholar 

  • Sabelli, P., Burgess, S.R., Kush, A.K. and Shewry, P.R. 1998. DNA replication initiation and mitosis induction in eukaryotes: the role of MCM and Cdc25. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 243–268.

    Google Scholar 

  • Satterwhite, L.L., Lohka, M.H., Wilson, K.L., Scherson, T.Y., Cisek, L.J., Corden, J.L. and Pollard, T.D. 1992. Phosphorylation of myosin-II regulatory light-chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J. Cell Biol. 118: 595–605.

    PubMed  Google Scholar 

  • Savouré, A., Fehér, A., Kaló, P., Petrovics, G., Csanádi, G., Szécsi, J., Kiss, G., Brown, S., Kondorosi, Á and Kondorosi, É. 1995. Isolation of a full-length cyclin cDNA clone CycIIIMs from Medicago sativa: chromosomal mapping and expression. Plant Mol. Biol. 27: 1059–1070.

    PubMed  Google Scholar 

  • Segers, G., Gadisseur, I., Bergounioux, C., de Almeida, E.L., Jacqmard, A., Van Montagu, M. and Inzé, D. 1996. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J. 10: 601–612.

    PubMed  Google Scholar 

  • Shuster, C.B. and Burgess, D.R. 1999. Parameters that specify the timing of cytokinesis. J. Cell Biol. 146: 981–992.

    PubMed  Google Scholar 

  • Snaith, H.A., Armstrong, C.G., Guo, Y., Kaiser, K. and Cohen, P.T.W. 1996. Deficiency of protein phophatase 2A uncouples the nuclear and centrosome cycles and prevents attachments of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J. Cell Sci. 109: 3001–3012.

    PubMed  Google Scholar 

  • Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C. and Murray, J.A.H. 1999. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol. 119: 343–351.

    Article  PubMed  Google Scholar 

  • Vissi, E., Csordás Tóth, É., Kovács, I., Magyar, Z., Horváth, V.G., Bagossi, P., Gergely, P., Dudits, D. and Dombrádi, V. 1998. Protein phosphatase 1 catalytic subunit isoforms from alfalfa: biochemical characterization and cDNA cloning. Arch. Biochem. Biophys. 360: 206–214.

    Article  PubMed  Google Scholar 

  • Wang, H., Qi, Q., Schorr, P., Cutler, A.J., Crosby, W.L. and Fowke, L.C. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and Cyc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15: 501–510.

    PubMed  Google Scholar 

  • Warburton, P.E. and Earnshaw, W.C. 1997. Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. BioEssays 19: 97-99.

    PubMed  Google Scholar 

  • Yamaguchi, M., Umeda, M. and Uchimiya, H. 1998. A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. Plant J. 16: 613–619.

    Article  PubMed  Google Scholar 

  • Yamashita, K., Yasuda, H., Pines, J., Yasumoto, K., Nishitani, H., Ohtsubo, M., Hunter, T., Sugimura, T. and Nishimoto, T. 1990. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 3: 4331–4338.

    Google Scholar 

  • Yang, J. and Kornbluth, S. 1999. All board the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol. 9: 207–210.

    PubMed  Google Scholar 

  • Zhang, K., Tsukitani, Y. and John, P.C.L. 1992. Mitotic arrest in tobacco caused by the phosphoprotein phosphatase inhibitor okadaic acid. Plant Cell Physiol. 33: 677–688.

    Google Scholar 

  • Zhang, K., Letham, D.A. and John, P.C.L. 1996. Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200: 2–12.

    Article  PubMed  Google Scholar 

  • Zhang, K., Diederich, L., Sek, F.J., Larkin, P.J., Letham, D.S. and John, P.C.L. 1998. Cytokinin acts on cell division through Cdc25 phosphatase. Poster abstract, 16th International Conference on Plant Growth Substances, Makuhari Messe, Japan, 13–17 August.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, T., Miskolczi, P., Ayaydin, F. et al. Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells. Plant Mol Biol 43, 595–605 (2000). https://doi.org/10.1023/A:1006412413671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006412413671

Navigation