Skip to main content
Log in

Monitoring uptake and contents of Mg, Ca and K in Norway spruce as influenced by pH and Al, using microprobe analysis and stable isotope labelling

  • Nutrient and Water Uptake by Roots
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In a model system using intact spruce trees (Picea abies [L.] Karst.) we followed the path of magnesium, calcium and potassium during uptake into the root and during long-range transport into the shoot, by multiple stable isotope labelling. The roots of two- and three-year-old spruce trees originating from soil culture were removed from the soil and, in part or in toto, exposed to labelling solutions containing the stable isotopes 25Mg or 26Mg, 41K and 42Ca or 44Ca. Optical-emission-spectroscopy (ICP-OES) of plant fractions and labelling solutions was combined with the quantitative analysis of stable isotope ratios in sections of shock frozen, cryosubstituted material using the laser-microprobe-mass-analyser (LAMMA). This combination allowed us to distinguish, both in bulk samples and on the cellular level between (i) the fraction of elements originally present in the plant before the start of the labelling, (ii) the material taken up from the labelling solution into the plant and (iii) any material released by the plant into the labelling solution.

In single-root labelling experiments, roots of three-year-old spruce trees, grown in nursery soil, were exposed to various pH conditions. The exchange of Mg and Ca with the labelling solution was nearly 100% in the cell walls of the mycorrhized finest roots. This exchange was only slightly affected by a step down to pH 3.5. The absolute Mg and Ca content in the cell walls was moderately reduced by incubation at pH 3.5 and strongly reduced in the presence of Al at this pH. After a pH 3.5 and 2 mM Al treatment we found Al in the xylem cell walls and the cortex cell lumina at elevated concentrations. To analyse the combined effect of high Al and high proton concentrations on the long-range transport, we used a “split-root system”. The root mass of an intact two-year-old spruce tree, grown in mineral soil, was divided into even parts and both halves incubated in solutions with two sets of different stable isotopes of Mg and Ca (side A: no Al, 25Mg and 42Ca; side B: +Al, 26Mg and 44Ca) and 41K on both sides. We observed a large uptake of Mg, Ca and K into the plant and a pronounced release. The net uptake of all three elements was lower from the Al-doted solution. In cross-sections of the apical shoot we found after seven-day labelling period about 60–70% of the Mg and Ca and 30% of the K content in the xylem cell walls originating from both labelling solutions. The clear majority of the Mg and Ca label originated from the Al-doted side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen M F 1991 The Ecology of Mycorrhizae. Cambridge Studies in Ecology, Cambridge University Press. 184p.

  • Allen M F 1992 Mycorrhizal functioning: an integrative plant-fungal process. Routledge, Chapman and Hall, Inc., New York, 534p.

    Google Scholar 

  • Asp H, Bengtsson B and Jensén P 1991 Influence of aluminium on phosphorus and calcium localization in roots of beech (Fagus sylvatica). Physiol. Plant. 83, 41–46.

    Google Scholar 

  • Bauch J and Schröder W H 1982 Zellulärer Nachweis einiger Elemente in den Feinwurzeln gesunder und erkrankter Tannen (Abies alba Mill.) und Fichten (Picea abies [L.] Karst.). Forstwiss. Centralbl. 101, 285–294.

    Google Scholar 

  • Bavelvan C H M and Baker J M 1985 Water transfer by plant roots from wet to dry soil. Naturwissenschaften 72, 606–607.

    Google Scholar 

  • Bengtsson B 1992 Influence of aluminium and nitrogen on uptake and distribution of minerals in beech roots (Fagus sylvatica). Vegetatio 101, 35–41.

    Google Scholar 

  • Bradfield E G 1976 Calciroutum complexes in the xylem sap of apple shoots. Plant and Soil 44, 495–499.

    Google Scholar 

  • BMFT 1990 Programmreport: Waldschadensforschung. Bundesministerium für Forschung und Technologie, Referat Öffentlichkeitsarbeit/Bonn. ISBN 3-88135-219-8. 39p.

  • BML 1992 Waldzustandsbericht der Bundesregierung 1992. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten, Heft 415. ISBN 3-7843-0415-X. 78p.

  • Clarkson D T 1984 Calcium transport between tissues and its distribution in the plant. Plant Cell Environ. 7, 449–456.

    Google Scholar 

  • Clarkson D T and Sanderson J 1977 Inhibition of the uptake and long-distance transport of calcium by aluminium and other polyvalent cations. J. Exp. Bot. 22, 837–851.

    Google Scholar 

  • Cooper H D and Clarkson D T 1989 Cycling of amino-nitrogen and other nutrients between shoot and roots in cereals—a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot. 40, 753–762.

    Google Scholar 

  • Cumming J R, Eckert R T and Evans L S 1985 Effect of aluminium on potassium uptake by red spruce seedlings. Can. J. Bot. 63, 1099–1103.

    Google Scholar 

  • Dambrine E, Carisey N, Pollier B and Granier A 1993 Effects of drought on the yellowing status and the dynamics of mineral elements in the xylem sap of declining spruce (Picea abies L.). Plant and Soil 150, 303–306.

    Google Scholar 

  • Evers F H 1983 Ein Versuch zur Aluminium-Toxizität bei Fichte. Ergebnisse eines Gefäßkulturversuchs mit bewurzelten Fichten-stecklingen. Forst. Holzwirt. 38 (12), 305–307.

    Google Scholar 

  • Fain G L and Schröder W H 1985 Calcium content and calcium exchange in dark-adapted toad rods. J. Physiol. 368, 641–665.

    Google Scholar 

  • Fain G L and Schröder W H 1987 Calcium in dark-adapted toad rods: evidence for pooling and cyclic-guanosine-3′-5′-monophospate-dependent release. J. Physiol. 389, 361–384.

    Google Scholar 

  • Ferguson I B 1980 The uptake and transport of calcium in the fruit tree. Acta Hortic. 92, 183–191.

    Google Scholar 

  • Feil W 1989 Morphologische und anatomische Untersuchungen zur Reaktion der Mykorrhizen von Picea abies[L.] Karst. auf natürlichen und experimentellen Trockenstreß. Dissertation, Universität Tübingen.

  • Foy C D 1984 Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. In Soil Acidity and Liming. Ed. FAdams. pp 57–97. Agronomy, American Society of Agronomy, Madison, Wisconsin, USA.

    Google Scholar 

  • Foy C D, Chaney R L and White M C 1978 The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29, 511–566.

    Google Scholar 

  • Godbold D L, Dictus K and Hüttermann A 1988a Influence of aluminum and nitrate on root growth and mineral nutrition of Norway spruce (Picea abies) seedlings. Can. J. For. Res. 18, 1167–1171.

    Google Scholar 

  • Godbold D L, Fritz E and Hüttermann A 1988b Aluminium toxicity and forest decline. Proc. Natl. Acad. Sci. USA 85 (Ecology). 3888–3892.

    Google Scholar 

  • Gülpen M, Türk S and Fink S 1993 Der Effekt von Kalkung und Magnesiumdüngung auf die Aufnahme, den Transport und die chemische Bindungsform von Calcium und Magnesium in Koniferen. KfK-PEF (Kernforschungszentrum Karlsruhe) 104, 195–207.

    Google Scholar 

  • Harvey D M R, Hall J L and Flowers T J 1976 The use of freeze-substitution in the preparation of plant tissue for ion localization studies. J. Microsc. 107, 189–198.

    Google Scholar 

  • Hecht-Buchholz Ch, Jorns C A and Keil P 1987 Effect of excess aluminium and manganese on Norway spruce seedlings as related to magnesium nutrition during Al stress. J. Plant Nutr. 10, 1103–1110.

    Google Scholar 

  • Heinen H J, Hillenkamp F, Kaufmann R, Schröder W H and Wechsung R 1980 LAMMA: A new laser microprobe mass analyser for biomedicine and biological materials analysis. In Recent Developments in Mass Spectrometry in Biochemistry and Medicine. Eds. AFrigerio and MMcCamish. pp 435–451. Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  • Hillenkamp F, Unsöld E, Kaufmann R and Nitsche R 1975 A high-sensitivity laser microprobe mass analyzer. Appl. Phys. 8, 341–348.

    Google Scholar 

  • Huang J and Bachelard E P 1993 Effects of aluminium on growth and cation uptake in seedlings of Eucalyptus mannifera and Pinus radiata. Plant and Soil 149, 121–127.

    Google Scholar 

  • Hüttl R F 1991 Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika. Frei. Bodenkd. Abh. 28. 440.

    Google Scholar 

  • Isermann K 1969 Aufnahme und Verlagerung von Calcium bei der höheren Pflanze. Dissertation, Universität Hohenheim. 132p.

  • Isermann K 1978 Einfluß von Chelatoren auf die Calcium-Verlagerung im Sproß höherer Pflanzen. Z. Pflanzenernähr. Bodenkd. 141, 285–298.

    Google Scholar 

  • Jentschke G, Schlegel H and Godbold D L 1991 The effect of aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol. Plant. 82, 266–270.

    Google Scholar 

  • Jorns A 1988 Aluminiumtoxizität bei Sämlingen der Fichte [Picea abies(L.) Karst.] in Nährlösungskultun. Ber. Forschungsz. Waldökosysteme / Waldsterben (Göttingen), Reihe A, Bd. 42, 86p.

  • Junga U 1984 Sterilkulturen als Modellsystem zur Untersuchung des Mechanismus der Aluminium-Toxizität bei Fichtenkeimlingen (Picea abies Karst.). Dissertation, Universität Göttingen.

  • Kottke I and Oberwinkler F 1986 Mycorrhiza of forest trees—structure and function Trees 1, 1–24.

    Google Scholar 

  • Kottke I, Guttenberger M, Hampp R and Oberwinkler F 1987 An in vitro method for establishing mycorrhizae on coniferous tree seedlings Trees 1, 191–194.

    Google Scholar 

  • Kreutzer K and Gottlein A 1991 Ökosystemforschung Höglwald. Verlag Paul Parey, Hamburg, Berlin. 261p.

    Google Scholar 

  • Kuhn A J, Schröder W H, Bauch J, Haug I, Kottke I and Oberwinkler F 1988 Mikrosonden-Umersuchungen zum Ionenaustausch und zur Ionenaufnahme in sterilen und mykorrhizierten Feinstwurzeln. In Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. Eds. J Bauch and W Michaelis. pp 255-286. GKSS-Forschungszentrum Geesthacht, GKSS 88/E/55.

  • Kuhn A J 1993 Mikrosonden-Analysen zur Ionenaufnahme in Fichten (Picea abies[L.] Karst.). Berichte des Forschungszentrum Jülich, Jül-2744, ISSN 0366-0885. Dissortation Universität Hamburg, Fachbereich Biologie (1992). 204p.

  • Lächli A 1976 Apoplasmic transport in tissues. Enc. Plant. Physiol. 2B, 3–34.

    Google Scholar 

  • Lüttge U and Higinbotham N 1979 Transport in Plants. Springer-Verlag, New York-Berlin-Heidelberg, 468p.

    Google Scholar 

  • Marschner H and Schimansky Chr 1968 Unterschiedliche Aufnahme von Kalium und Rubidium durch Gerste. Naturwissenschaften 55 (10), 499.

    Google Scholar 

  • Marschner H and Römheld V 1983 In vivo measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen source. Z. Pflanzenphysiol. 111, 241–251.

    Google Scholar 

  • Marschner H 1991 Mechanisms of adaptation of plants to acid soils. Plant and Soil 134, 1–20.

    Google Scholar 

  • Mascorro J A, Ladd M W and Yates R D 1976 Rapid infiltration of biological tissues utilising n-hexenyl succinic anhydride (HXSA) /vinyl cyclohexene dioxide (VCD), an ultra-low viscosity embedding medium. 34th. Ann. Proc. E.M.S.A. pp 346–347.

  • Michaelis W and Bauch J 1992 Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg, GKSS-Forschungszentrum Geesthacht GmbH., GKSS 92/E/ 100. 455 p.

  • Michaelis W, Fanger H U, Niedergesäß R and Schwenke H 1985 Symp. Instrumental Multielement Analysis, April 2–5, Jülich. In Instrumentelle Multielement-Analyse. Ed. BSansoni. p 693. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Mohr H 1994 Stickstoffeintrag als Ursache neuartiger Waldschäden. Spektrum der Wissenschaft 1, 48–53.

    Google Scholar 

  • Mullette K J 1975 Stimulation of growth in Eucalyptus due to aluminium. Plant and Soil 42, 619–636.

    Google Scholar 

  • Murach D 1984 Die Reaktion der Feinwurzeln von Fichten (Picea abies Karst.) auf zunehmende Bodenversauerung. Göttinger Bodenkd. Ber. 77, 1–126.

    Google Scholar 

  • Puhe J, Persson H and Börjesson I 1986 Wurzelwachstum und Wurzelschäden in skandinavischen Nadelwäldern. Allg. Forstz. 20, 488–492.

    Google Scholar 

  • Rademacher P 1986 Morphologische und physiologische Eigenschaften von Fichten (Picea abies [L.] Karst.), Tannen (Abies alba Mill.), Kiefern (Pinus sylvestris L.) und Buchen (Fagus sylvatica L.) gesunder und erkrankter Waldstandorte. GKSS-Forschungszentrum Geesthacht, GKSS 86/E/10. 274p.

  • Rengel Z 1992 Role of calcium in aluminium toxicity. New Phytol. 121, 499–513.

    Google Scholar 

  • Rost-Siebert K 1983 Aluminium—Toxizität und Toleranz an Keimpflanzen von Fichte (Picea abies Karst.) und Buche (Fagus silvatica L.). Allg. Forstz. 38 (26/27), 686–689.

    Google Scholar 

  • Rost-Siebert K 1985 Untersuchungen zur H- und Al-Ionen-Toxizität an Keimpflanzen von Fichte (Picea abies Karst.) und Buche (Fagus sylvatica L.) in Lösungskultur. Ber. Forschungsz. Waldökosysteme/Waldsterben (Göttingen) 12, 1–219.

    Google Scholar 

  • Ryan P R, Ditomaso J M and Kochian L V 1993 Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot. Vol. 44, No. 259, 437–446.

    Google Scholar 

  • Schaedle M, Thornton F C, Raynal D J and Trepper H B 1989 Response of tree seedlings to aluminum. Tree Physiol. 5, 337–356.

    Google Scholar 

  • Scheffer F and Schachtschabel P 1976 Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart. 394p.

    Google Scholar 

  • Schimansky Chr 1991 Einfluß von Aluminium und Protonen auf die Aufnahme und den Transport von Magnesium (28Mg) bei Gerste (Hordeum vuigare L.). Z. Pflanzenernähr. Bodenkd. 154, 1–4.

    Google Scholar 

  • Schröder W H 1981 Quantitative LAMMA analysis of biological specimens. I. Standards. II. Isotope labelling. Fresenius Z. Anal. Chem. 308, 212–217.

    Google Scholar 

  • Schröder W H, Bauch J and Endeward R 1988 Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: influence of pH and aluminum. Trees 2, 96–103.

    Google Scholar 

  • Schulze E D 1989 Air pollution and forest decline in a spruce (Picea abies) forest. Science 244, 776–783.

    Google Scholar 

  • Schütt P 1977 Das Tannensterben. Der Stand unseres Wissens über eine aktuelle und gefährliche Komplex-Krankheit der Weißtanne (Abies alba Mill.). Forstwiss. Centralbl. 96, 177–186.

    Google Scholar 

  • Spurr A R 1969 A low viscosity embedding medium for electron microscopy. J. Ultrastructure Res. 1, 239–246.

    Google Scholar 

  • Squires G L 1971 Meßergebnisse und ihre Auswertung. Walter de Gruyter, Berlin-New York. 240p.

    Google Scholar 

  • Steinbrecht R A and Zierold K 1987 Cryotechniques in Biological Electron Microscopy. Springer-Verlag, Berlin-Heidelberg, N Y, London, Paris, Tokyo. 297p.

    Google Scholar 

  • Stienen H and Bauch J 1988 Element content in tissues of spruce seedlings from hydroponic cultures simulating acidification and deacidification. Plant and Soil 106, 232–238.

    Google Scholar 

  • Taylor G J 1991 Current views of the aluminum stress response, the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol. 10, 57–93.

    Google Scholar 

  • Tischner R, Kaiser U and Hüttermann A 1983 Untersuchungen zum Einfluß von Aluminium-lonen auf das Wachstum von Fichtenkeimlingen in Abhängigkeit von pH-Wert. Forstwiss Centralbl. 102, 329–336.

    Google Scholar 

  • Thomas W A 1967 Dye and calcium ascent in dogwood trees. Plant Physiol. 42, 1800–1802.

    Google Scholar 

  • Thomas W A 1969 Accumulation and cycling of calcium by dogwood trees. Ecol. Monogr. 39, 101–120.

    Google Scholar 

  • Türk S, Gülpen M and Fink S 1993 Aufnahme, Transport und Verbleib von Calcium und Magnesium in Fichten (Picea abies [L.] Karst.) und Kiefern (Pinus silvestris L.) bei unterschiedlicher Ernährung und Schadstoffbelastung. Forstwiss. Centralbl. 112, 191–208.

    Google Scholar 

  • Ulrich B 1981 Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstwiss, Centralbl. 100, 228–236.

    Google Scholar 

  • Wagatsuma T, Kaneko M and Hayasaka Y 1987 Destruction process of plant root cells by aluminum in the roots. Soil Sci. Plant Nutr. 33, 161–175.

    Google Scholar 

  • Weast R C 1989 Handbook of Chemistry and Physics. 70st edn. Chemical Rubber Co., Cleveland.

    Google Scholar 

  • Wieneke J 1969 Calciumtranslokation und Ätiologie der Stippigkeit beim Apfel. Der Erwerbsobstbau 11. Jahrg., Heft 12, 225-231.

    Google Scholar 

  • Wieneke J 1974 Untersuchungen zur Translokation von 45Ca im Apfelbaum. II. Transport zur Frucht und Verteilung. Gartenbauwissenschaft 39, 57–67.

    Google Scholar 

  • Wieneke J and Führ F 1973 Untersuchungen zur Translokation von 45Ca im Apfelbaum. I. Transport und Verteilung in Abhängigkeit vom Aufnahmezeitpunkt. Gartenbauwissenschaft 38 (20), 91–108.

    Google Scholar 

  • Wilkinson R E and Duncan R R 1993 Calcium (45Ca2+) absorption inhibition by aluminum (Al3+) in Sorghum roots. J. Plant Nutr. 16, 235–240.

    Google Scholar 

  • Woods F W and Brock K 1964 Interspecific transfer of Ca-45 and P-32 by root systems. Ecology 45, 886–889.

    Google Scholar 

  • Zech W and Popp E 1983 Magnesiummangel, einer der Gründe für das Fichten-und Tannensterben in NO-Bayern. Forstwiss. Centralbl. 102, 50–55.

    Google Scholar 

  • Zöttl H W and Hüttl R F 1985 Schadsymptome und Ernährungszustand von Fichtenbeständen im südwestdeutschen Alpenvorland. Allg. Forstz. 9/10, 197–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, A.J., Bauch, J. & Schröder, W.H. Monitoring uptake and contents of Mg, Ca and K in Norway spruce as influenced by pH and Al, using microprobe analysis and stable isotope labelling. Plant Soil 168, 135–150 (1995). https://doi.org/10.1007/BF00029322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029322

Key words

Navigation