Skip to main content
Log in

Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens

  • Research Articles
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Explants from leaves of in vitro-grown chrysanthemum (Dendranthema grandiflora Tzvel.) cultivars regenerated adventitious shoots without an intermediate callus phase. Puncturing explants with a brush increased regenerations, but in combination with cocultivation with Agrobacterium tumefaciens it had an adverse effect on shoot formation. The negative effect of brushing and cocultivation could be overcome by preculturing explants for 8 days. Preculture altered the location of transformed sites but did not inhibit transformation. Regeneration following cocultivation with Agrobacterium is also encouraged if alternative regeneration protocols are used that do not require brushing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

GUS:

β-glucuronidase

IAA:

indoleacetic acid

NAA:

naphthaleneacetic acid

References

  • Bush SR, Earle ED & Langhans RW (1976) Plantlets from petal segments, petal epidermis and shoot tips of the periclinal chimera, Chrysanthemum morifolium ‘Indianapolis’. Amer. J. Bot. 63: 729–737

    Google Scholar 

  • Colby SM, Juncosa AM & Meredith CP (1991) Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 116: 356–361

    Google Scholar 

  • DeBlock M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor. Appl. Genet. 76: 767–774

    Google Scholar 

  • DeJong J & Van DeVrie M (1987) Components of resistance to Liriomyza trifolii in Chrysanthemum morifolium and Chrysanthemum pacificum. Euphytica 36: 719–724

    Google Scholar 

  • Firoozabady E & Galbraith DW (1984) Presence of a plant cell wall is not required for transformation of Nicotiana by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 3: 175–184

    Google Scholar 

  • Fukai S & Oë M (1986) Effects of plant growth regulators on organ formation from leaf and stem segments of chrysanthemum (Dendranthema grandiflorum Kitamura) in vitro. Bull. Osaka Agr. Res. Cent. 23: 25–31

    Google Scholar 

  • Fukai S, Chen Z & Oë M (1987) Cultivar differences in adventitious shoot formation from leaf segments of chrysanthemum (Dendranthema grandiflorum Ramat. Kitamura) Bull. Osaka Agr. Res. Cent. 24: 55–58

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooijkaas PJJ & Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180

    Google Scholar 

  • Huitema JBM, Preil W, Gussenhoven GC & Schneidereit M (1989) Methods for the selection of low-temperature tolerant mutants of Chrysanthemum morifolium by using irradiated cell suspensions. I. Selection of regenerants in vivo under suboptimal temperature conditions. Plant Breeding 102: 140–147

    Google Scholar 

  • Janssen BJ & Gardner RC (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14: 61–72

    Google Scholar 

  • Jefferson RA, Kavanagh TA & Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907

    Google Scholar 

  • Kaul V, Miller RM, Hutchinson JF & Richards D (1990) Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzelev (Syn. Chrysanthemum morifolium Ramat.) Plant Cell Tiss. Org. Cult. 21: 21–30

    Google Scholar 

  • Koornneef M, Hanhart CJ & Martinelli L (1987) A genetic analysis of cell culture traits in tomato. Theor. Appl. Genet. 74: 633–641

    Google Scholar 

  • Larkin PJ & Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214

    Google Scholar 

  • Ledger SF, Deroles SC & Given NK (1991) Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10: 195–199

    Google Scholar 

  • Lemieux CS, Firoozabady E & Robinson KEP (1990) Agrobacterium-mediated transformation of Chrysanthemum. In: DeJong J (Ed) Proc. Eucarpia Symposium on Integration of In Vitro Techniques in Ornamental Plant Breeding (pp 150–155). Pudoc, Wageningen, The Netherlands

    Google Scholar 

  • Lu CY, Nugent G & Wardley T (1990) Efficient, direct plant regeneration from stem segments of chrysanthemum (Chrysanthemum morifolium Ramat. cv. Royal Purple) Plant Cell Rep. 8: 733–736

    Google Scholar 

  • McHughen A, Jordan M & Feist G (1989) A preculture period prior to Agrobacterium inoculation increases the production of transgenic plants. J. Plant Physiol 135: 245–248

    Google Scholar 

  • Miyazaki S, Kishida E, Tashiro Y & Kanazawa K (1979) Tissue culture of Chrysanthemum morifolium Ramat. V. Histological studies on the callus and shoot formation in stem segments cultured in vitro. Agric. Bull. Saga Univ. 46: 43–65

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nadolska-Orczyk A & Malepszy S (1989) In vitro culture of Cucumis sativus L. 7. Genes controlling plant regeneration. Theor. Appl. Genet. 78: 836–840

    Google Scholar 

  • Park YG & Son SH (1988) In vitro organogenesis and somatic embryogenesis from punctured leaf of Populus nigra x P. maximowiczii. Plant Cell Tiss. Org. Cult. 15: 95–105

    Google Scholar 

  • Roest S & Bokelmann GS (1975) Vegetative propagation of Chrysanthemum morifolium Ram. in vitro. Scientia Hort. 3: 317–330

    Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L & Rocha-Sosa M (1990) Construction of an introncontaining marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, J., Rademaker, W. & van Wordragen, M.F. Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens . Plant Cell Tiss Organ Cult 32, 263–270 (1993). https://doi.org/10.1007/BF00042287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042287

Key words

Navigation