Skip to main content
Log in

Computer Modeling for Geothermal Systems: Predicting Carbonate and Silica Scale Formation, CO2 Breakout and H2S Exchange

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper describes chemical equilibrium models for predicting carbonate and silica scale formation, CO2 breakout and H2S gas exchange in geothermal brine systems to high concentration and temperature. The equilibrium description is based on a minimization of the free energy of the system with solute activities described by the semiempirical equations of Pitzer (1973; 1987). The carbonate model is parameterized by appropriate osmotic, electromotive force and solubility data (T ≤ 250°C) available in binary and ternary solutions in the seawater Na–K–H–Ca–Cl–SO4–H2O system. The silica model is parameterized by solubility data to 320°C in the Na–Mg–Cl–SO4–SiO2–H2O system. The H2S model is parameterized by solubility data in the H2S–NaCl–H2O system to 320°C. The predictive capabilities of the models are demonstrated by comparison to both laboratory and field data. Examples have been given to illustrate the use of the carbonate model to predict downhole brine compositions in contact with specified formation minerals, temperature and pressure effects on carbonate scaling, the effect of scale inhibitors and breakout characteristics. Application of the silica model demonstrates the effect of temperature on silica scale formation. These illustrations show that the models can be used to reliably predict important chemical behavior in geothermal operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akerlof, G. and Kegeles, G.: 1940 Thermodynamics of concentrated aqueous solutions of sodium hydroxide, J. Am. Chem. Soc. 62, 620–640.

    Google Scholar 

  • Angus, S., Armstrong, B. and Reach, K. M.: 1976, International Thermo-Dynamics Tables of Fluid State Carbon Dioxide, Pergamon Press, Oxford.

    Google Scholar 

  • Barrett, T. J., Anderson, G. M., and Lugowski, J.: 1988, The solubility of hydrogen sulfide in 0–5 m NaCl solutions at 25–95°C and one atm, Geochim. Cosmochim. Acta 52, 807–881.

    Google Scholar 

  • Barta, L. and Bradley, D. J.: 1985, Extension of the specific interaction model to include gas solubilities in high temperature brines, Geochim. Cosmochim. Acta 49, 195–203.

    Google Scholar 

  • Brantley, S., Crerar, D., Møller, N. and Weare, J. H.: 1984, Geochemistry of a marine evaporite: Bocana de Virilla, Peru, J. Sed. Pet. 54, 447–462.

    Google Scholar 

  • Busey, R. H. and Mesmer, R. E.: 1978, Thermodynamic quantities for the ionization of water in sodium chloride media to 300°C, J. Chem. Eng. Data 23, 175–176.

    Google Scholar 

  • Carroll, J. J. and Mather, A. E.: 1989, The solubility of hydrogen sulphide in water from 0 to 90°C, Geochim. Cosmochim. Acta 53, 1163–1170.

    Google Scholar 

  • Chen, C.-T. A. and Marshall, W. L.: 1982, Amorphous silica solubilities, IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride and magnesium sulfate solutions up to 350°C, Geochim. Cosmochim. Acta 46, 279–287.

    Google Scholar 

  • Clarke, E. C. and Glew, D. N.: 1971, Aqueous nonelectrolyte solutions, Part VIII. Deuterium sulfide solubilities in deuterium oxide and water, Can. J. Chem. 49, 691–698.

    Google Scholar 

  • Douabul, A. A. and Riley, J. P.: 1979, The solubility of gases in distilled water and seawater, V. Hydrogen sulfide, Deep-Sea Res. 26A, 259–268.

    Google Scholar 

  • Drummond, S. E.: 1981, Boiling and mixing of hydrothermal fluids: chemical effects on mineral precipitation, Ph.D. Thesis, Pennsylvania State University, State Park, PA.

    Google Scholar 

  • Duan, Z., Møller, N. and Weare, J. H.: 1992a, An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0°C to 1000°C and 0 to 8000 bar, Geochim. Cosmochim. Acta 56, 2605–2617.

    Google Scholar 

  • Duan, Z., Møller, N. and Weare, J. H.: 1992b, An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50°C to 1000°C and 0 to 1000 bar, Geochim. Cosmochim. Acta 56, 2619–2631.

    Google Scholar 

  • Duan, Z., Møller, N. and Weare, J. H.: 1996, Prediction of the solubility of H2S in NaCl aqueous solution: an equation of state approach, Chem. Geol. 130, 15–20.

    Google Scholar 

  • Ellis, A. J.: 1959a, The solubility of carbon dioxide at high temperatures, Am. J. Sci. 257, 217–234.

    Google Scholar 

  • Ellis, A. J.: 1959b, The solubility of calcite in carbon dioxide solutions, Am. J. Sci. 257, 354–365.

    Google Scholar 

  • Ellis, A. J. and Golding, R. M.: 1963, The solubility of carbon dioxide above 100°C in water and in sodium chloride solutions, Am. J. Sci. 261, 47–60.

    Google Scholar 

  • Felmy, A. R. and Weare, J. H.: 1986, The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California, Geochim. Cosmochim. Acta 50, 2771–2783.

    Google Scholar 

  • Gamsjager, H. and Kaplan, I. R.: 1969, Solubilities and activity coefficients of H2S in electrolyte mixtures, Helv. Chim. Acta 52, 1395–1402.

    Google Scholar 

  • Greeley, R. S.: 1960, Electromotive force studies in aqueous solutions at elevated temperatures. I. The standard potential of the silver-silver-chloride electrode, J. Phys. Chem. 64, 652–657.

    Google Scholar 

  • Greenberg, J. P. and Møller, N.: 1989, The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system from 0°C to 250°C, Geochim. Cosmochim. Acta 53, 2503–2518.

    Google Scholar 

  • Greenberg, J. P. and Weare, J. H.: 1994, Simultaneous multiphase precipitation in the Primal chemical equilibrium problem, “Thermophysical Properties for Industrial Process Design,” Am. Inst. Chem. Eng. 90, 51–63.

    Google Scholar 

  • Harned, H. S. and Bonner, F. T.: 1945, The first ionization of carbonic acid in aqueous solutions of sodium chloride, J. Am. Chem. Soc. 67, 1026–1031.

    Google Scholar 

  • Harned, H. S. and Davis, R.: 1943, The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous solutions from 0°C to 50°C, J. Am. Chem. Soc. 57, 2030–2037.

    Google Scholar 

  • Harned, H. S. and Mannweiler, G. E.: 1935, The thermodynamics of ionized water in sodium chloride solutions, J. Am. Chem. Soc. 57, 1873–1876.

    Google Scholar 

  • Harned, H. S. and Scholes, S. R.: 1941, The ionization constant of HCO 3 from 0°C to 50°C, J. Am. Chem. Soc. 63, 1706–1709.

    Google Scholar 

  • Harvie, C. E. and Weare, J. H.: 1980, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25°C, Geochim. Cosmochim. Acta 44, 981–997.

    Google Scholar 

  • Harvie, C. E., Greenberg, J. P., and Weare, J. H.: 1987, A chemical equilibrium algorithm for highly non-ideal multiphase systems: free energy minimization, Geochim. Cosmochim. Acta 51, 1045–1057.

    Google Scholar 

  • Harvie, C. E., Møller, N., and Weare, J. H.: 1984, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta 48, 723–751.

    Google Scholar 

  • He, S. L. and Morse, J. W.: 1993, The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0°C to 90°C, Geochim Cosmochim. Acta 57, 3533–3554.

    Google Scholar 

  • Holland, H. D., Borcsik, M. and Rosenberg, P. E.: 1963, Solubility of Carbonates in Aqueous Solutions, Annual Report, NSF Grant GP-420.

  • Kendall, J. and Andrews, J. C.: 1921, The solubilities of acids in aqueous solutions of other acids, J. Am. Chem. Soc. 43, 1545–1560.

    Google Scholar 

  • Kozintseva, T. N.: 1964, Solubility of hydrogen sulfide in water at elevated temperatures, Geochem. Int. 1, 750–756.

    Google Scholar 

  • Lee, J. I. and Mather, A. E.: 1977, Solubility of hydrogen sulfide in water, Ber. Bunsenges Phys. Chem. 81, 1021–1023.

    Google Scholar 

  • Malinin, S. D.: 1970, Application of the theory of strong electrolytes to the solubility of carbonates (calcite and witherite) at high temperatures, Geokhimiya 5, 540–551.

    Google Scholar 

  • Malinin, S. D. and Kurovskaya, N. A.: 1975, Solubility of CO2 in chloride solutions at elevated temperatures and CO2 pressures, Geokhimiya 4, 547–550.

    Google Scholar 

  • Mayer, J. E.: 1950, The theory of ionic solutions, J. Chem. Phys. 18, 1426–1436.

    Google Scholar 

  • Møller N.: 1988, The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system to high temperature and concentration, Geochim. Cosmochim. Acta 52, 821–837.

    Google Scholar 

  • Patterson, C. S., Busey, R. H. and Mesmer, R. E.: 1984, Second ionization of carbonic acid in NaCl media to 250°C, J. Soln. Chem. 13, 647–661.

    Google Scholar 

  • Patterson, C. S., Slocum, G. H., Busey, R. H. and Mesmer, R. H.: 1982, Carbonate equilibria in hydrothermal systems: first ionization of carbonic acid in NaCl media to 300°C, Geochim. Cosmochim. Acta 46, 1653–1663.

    Google Scholar 

  • Pitzer, K. S.: 1973, Thermodynamics of electrolytes: I. Theoretical basis and general equations, J. Phys. Chem. 77, 268–277.

    Google Scholar 

  • Pitzer, K. S.: 1975, Thermodynamics of electrolytes. V. Effects of higher order electrostatic terms, J. Soln. Chem. 4, 249–265.

    Google Scholar 

  • Pitzer, K. S.: 1987, Thermodynamic model for aqueous solutions of liquid-like density, Reviews in Mineralogy 17, 97–142.

    Google Scholar 

  • Pitzer K. S., Peiper, J. C. and Busey, R. H.: 1984, Thermodynamic properties of aqueous sodium chloride solutions, J. Phys. Chem. Ref. Data 13, 1–102.

    Google Scholar 

  • Pitzer K. S., Olsen, J., Simonson, J. M., Rabindra, N. R., Gibbons, J. J. and Rowe, L.: 1985, Thermodynamics of aqueous magnesium and calcium bicarbonates and mixtures with chloride, J. Chem. Eng. Data 30, 14–17.

    Google Scholar 

  • Plummer, N. L. and Busenberg, E.: 1982, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0°C and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta 46, 1011–1037.

    Google Scholar 

  • Pool, K. H., Reney, P. J. and Shannon, D. W.: 1987, Calcite solubility in simulated brines, Battelle Pacific Northwest Laboratory Report PNL-6157.

  • Rau, H. and Mathia, W.: 1982, Equation of state for gaseous H2S. Ber. Bunsenges. Phys. Chem. 86, 108–109.

    Google Scholar 

  • Reamer, H. H., Sage, B. H. and Lacey, W. N.: 1950, Volumetric behavior of hydrogen sulfide, Ind. Eng. Chem. 42, 140–143.

    Google Scholar 

  • Reed, M. J.: 1989, Thermodynamic calculations of calcium carbonate scaling in geothermal wells, Dixie Valley Geothermal Field, USA, Geothermics 18, 269–277.

    Google Scholar 

  • Rogers, P. S. Z. and Pitzer, K. S.: 1981, High temperature thermodynamic properties of sodium sulfate solutions, J. Phys. Chem. 85, 2886–2895.

    Google Scholar 

  • Shaughnessy, C. M. and Kline, W. E.: 1982, EDTA removes formation damage at Prudhoe Bay, Soc. Petrol. Eng. SPE11188, 57th Annual Fall Technical Conference.

  • Spencer, R. J., Møller, N. and Weare J. H.: 1990, The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C, Geochim. Cosmochim. Acta 54, 575–590.

    Google Scholar 

  • Suleimenov, O. M.: and Krupp, R. E.: 1994, Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20°C to 320°C and at saturation pressures, Geochim. Cosmochim. Acta 58, 2433–2444.

    Google Scholar 

  • Weare, J. H., Harvie, C. E. and Møller, N.: 1982, Toward an accurate and efficient chemical model for hydrothermal brines, Soc. Petrol. Eng. J. Oct., 699–708.

  • Winkler, L. W.: 1906, Gesetzmässigkeit bei der absorption der gases in flüssigkieten, Z. Phys. Chem. 55, 344–354.

    Google Scholar 

  • Wright, L. W. and Maass, O.: 1932a, The solubility of hydrogen sulphide in water from the vapor pressures of the solutions, Can. J. Res. 6, 94–101.

    Google Scholar 

  • Wright, L. W. and Maass, O.: 1932b, The electrical conductivity of aqueous solutions of hydrogen sulfide and the state of the dissolved gases, Can J. Res. 6, 588–595.

    Google Scholar 

  • Yasunishi, A. and Yoshida, F.: 1979, Solubility of carbon dioxide in aqueous electrolyte solutions, J. Chem. Eng. Data 24, 11–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MØller, N., Greenberg, J.P. & Weare, J.H. Computer Modeling for Geothermal Systems: Predicting Carbonate and Silica Scale Formation, CO2 Breakout and H2S Exchange. Transport in Porous Media 33, 173–204 (1998). https://doi.org/10.1023/A:1006501927827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006501927827

Navigation