Skip to main content
Log in

Isomeric forms of tris-Schiff base complexes of iron(II): structure of the complex derived from 2-acetyl pyridine and methylamine

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The structure of the tetrahydrate of the nitroprusside salt of the tris-ligand-FeII complex of the Schiff base derived from 2-acetyl pyridine and methylamine has been established by x-ray diffraction methods. The cation has themer-configuration in this salt in the solid phase. Kinetic and spectroscopic, particularly1H n.m.r., results indicate that bothmer-andfac-isomers of this, and of related complexes, have to be considered in solution. Kinetics of base hydrolysis of the title cation, and its solvation, in MeOH-H2O mixtures are described and compared with those for other low-spin FeII-diimine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemical Society Special Publications No. 17 (1968) and No. 25 (1974); W. A. E. McBryde,A Critical Review of Equilibrium Data for Proton- and Metal Complexes of 1, 10-Phenanthroline, 2,2′-Bipyridyl, and Related Compounds, Pergamon (1978).

  2. P. Krumholz,Struct. Bonding,9, 139 (1971).

    Google Scholar 

  3. M. J. Cook, A. P. Lewis, G. S. G. McAuliffe and A. J. Thomson,Inorg. Chim. Acta,64, L25 (1982).

    Google Scholar 

  4. G. N. La Mar and G. R. van Hecke,Inorg. Chem.,9, 1546 (1970).

    Google Scholar 

  5. P. Krumholz,J. Am. Chem. Soc.,75, 2163 (1953); D. H. Busch and J. C. Bailar,J. Am. Chem. Soc.,78, 1137 (1956); G. Bahr and H.-G. Döge,Z. Anorg. Allg. Chem.,292, 119 (1957).

    Google Scholar 

  6. L. J. Wilson and I. Bertini,J. Coord. Chem.,1, 237 (1971).

    Google Scholar 

  7. Razak bin Ali, J. Burgess, M. Kotowski and R. van Eldik,Transition Met. Chem.,12, 230 (1987).

    Google Scholar 

  8. V. L. Goedken,J. Chem. Soc., Chem. Commun., 207 (1972).

  9. G. Tuchtenhagen and K. Rühlmann,Annalen,711, 174 (1968).

    Google Scholar 

  10. K. Schlosser and E. Hoyer,Z. Chem.,10, 439 (1970).

    Google Scholar 

  11. R. K. Murmann and E. A. Healy,J. Am. Chem. Soc.,83, 2092 (1961).

    Google Scholar 

  12. P. Krumholz,Inorg. Chem.,4, 757 (1965); E. Baggio-Saitovitch and M. A. de Paoli,Inorg. Chim. Acta,27, 15 (1978).

    Google Scholar 

  13. H. E. Toma, A. M. da C. Ferreira and N. Y. M. Iha,Nouv. J. Chem.,9, 473 (1985); H. E. Toma and P. S. Santos,Inorg. Chem.,26, 3218 (1987).

    Google Scholar 

  14. D. L. Elvidge,Ph.D. thesis, Leicester, 1988.

  15. P. Krumholz,Inorg. Chem.,4, 609 (1965).

    Google Scholar 

  16. S. Radulović,Ph.D. thesis, Leicester, 1988.

  17. G. M. Sheldrick,SHELX Program for Crystal Structure Determination, University of Cambridge (1976);SHELXS 84, personal communication.

  18. International Tables for X-ray Crystallography, ed. J. A. J. A. Ibers and W. C. Hamilton, Kynoch Press, Birmingham, England, 1974, vol. IV.

    Google Scholar 

  19. M. J. Blandamer, J. Burgess, B. Clark, P. P. Duce, A. W. Hakin, N. Gosal, S. Radulović, P. Guardado, F. Sanchez, C. D. Hubbard and E. A. Abu-Gharib,J. Chem. Soc., Faraday Trans. I.,82, 1471 (1986).

    Google Scholar 

  20. M. Mikami, M. Konno and Y. Saito,Acta Cryst.,B36, 275 (1980); I. Wiehl, G. Kiel, C. P. Köhler, H. Spiering and P. Gütlich,Inorg. Chem.,25, 1565 (1986).

    Google Scholar 

  21. H. A. Goodwin, E. S. Kucharski and A. H. White,Aust. J. Chem.,36, 1115 (1983).

    Google Scholar 

  22. J. R. Sams and Tsang Bik Tsin,J. Chem. Soc., Dalton Trans., 488 (1976).

  23. M. J. Blandamer, J. Burgess, P. Guardado, C. D. Hubbard, S. Nuttall, L. J. S. Prouse, S. Radulović and D. R. Russell, submitted toJ. Am. Chem. Soc.

  24. J. Burgess and C. D. Hubbard,J. Am. Chem. Soc.,106, 1717 (1984).

    Google Scholar 

  25. L. Mazzarella, C. Pellechia, C. A. Mattia and V. de Felice,J. Coord. Chem.,14, 191 (1986).

    Google Scholar 

  26. P. C. Healy, B. W. Skelton and A. H. White,Aust. J. Chem.,36, 2057 (1983); M. E. Garcia Posse, M. A. Juri, P. J. Aymonino, O. E. Piro, H. A. Negri and E. E. Castellano,Inorg. Chem.,23, 948 (1984).

    Google Scholar 

  27. L. Johansson, M. Molund and A. Oskarsson,Inorg. Chim. Acta,31, 117 (1978); A. T. Baker and H. A. Goodwin,Aust. J. Chem.,38, 851 (1985).

    Google Scholar 

  28. See, e.g., M. J. Blandamer, J. Burgess, J. Fawcett, S. Radulović and D. R. Russell,Transition Met. Chem.,13, 120 (1988) and references therein.

    Google Scholar 

  29. J. Szklarzewicz, A. Samotus, N. W. Alcock and M. Moll, submitted toJ. Chem. Soc., Dalton Trans.

  30. S. K. Ramalingam, M. Raman and V. Rajaram,J. Coord. Chem.,15, 329 (1987).

    Google Scholar 

  31. P. Addy, D. F. Evans and R. N. Sheppard,Inorg. Chim. Acta,127, L19 (1987).

    Google Scholar 

  32. M. A. Green and J. C. Huffman,J. Nucl. Med.,29, 417 (1988).

    Google Scholar 

  33. P. Addy, D. F. Evans and Q. de Sourza,Polyhedron,6, 2003 (1987).

    Google Scholar 

  34. B. A. Borgias, S. J. Barclay and K. N. Raymond,J. Coord. Chem.,15, 109 (1986).

    Google Scholar 

  35. C. A. Matsuba, S. J. Rettig and C. Orvig,Can. J. Chem.,66, 1809 (1988).

    Google Scholar 

  36. R. H. Holm,Accts. Chem. Res.,2, 307 (1969); D. E. Henderson, S. J. Saltzman, P. C. Uden and Z. Cheng,Polyhedron,7, 369 (1988).

    Google Scholar 

  37. A. J. Deeming and M. N. Meah,Inorg. Chim. Acta,117, L13 (1986).

    Google Scholar 

  38. R. G. Denning and T. S. Piper,Inorg. Chem.,5, 1056 (1966).

    Google Scholar 

  39. P. S. Cartwright and R. D. Gillard,Polyhedron,7, 1243 (1988).

    Google Scholar 

  40. A. R. Butler, A. M. Calsy and C. Glidewell,Polyhedron,8, 175 (1989).

    Google Scholar 

  41. P. W. Carreck, J. Charalambous, M. J. Kensett, M. McPartlin and R. Sims,Inorg. Nucl. Chem. Lett.,10, 749 (1974).

    Google Scholar 

  42. J. Bjerrum, A. W. Adamson and O. Bostrup,Acta Chem. Scand.,10, 329 (1956); A. A. Schilt,J. Am. Chem. Soc.,82, 3000 (1960); J. Burgess,Spectrochim. Acta,26A, 1957 (1970).

    Google Scholar 

  43. S. Goswami, R. Mukherjee and A. Chakravorty,Inorg. Chem.,22, 2825 (1983); R. A. Krause and K. Krause,Inorg. Chem.,19, 2600 (1980).

    Google Scholar 

  44. P. Lefko and D. V. Stynes,J. Coord. Chem.,16, 383 (1988).

    Google Scholar 

  45. E. J. S. Vichi and P. Krumholz,J. Chem. Soc., Dalton Trans., 1543 (1975).

  46. M. Tubino and E. J. S. Vichi,Inorg. Chim. Acta,28, 29 (1978).

    Google Scholar 

  47. J. Burgess,J. Chem. Soc. A, 497 (1968).

  48. D. L. Elvidge, P. Guardado, C. D. Hubbard, F. M. Mekhail and J. Burgess, unpublished observations.

  49. E. L. Blinn and R. G. Wilkins,Inorg. Chem.,15, 2952 (1976).

    Google Scholar 

  50. M. J. Blandamer and J. Burgess,Coord. Chem. Rev.,31, 93 (1981);Pure Appl. Chem.,54, 2285 (1982).

    Google Scholar 

  51. J. Burgess and M. V. Twigg,J. Chem. Soc., Dalton Trans., 2032 (1974).

  52. G. K. Pagenkopf and D. W. Margerum,Inorg. Chem.,7, 2514 (1968).

    Google Scholar 

  53. K. Pohl, K. Wieghardt, W. Kaim and S. Steenken,Inorg. Chem.,27, 440 (1988).

    Google Scholar 

  54. E. A. Abu-Gharib, M. J. Blandamer, J. Burgess, N. Gosal, P. Guardado, F. Sanchez and C. D. Hubbard,Transition Met. Chem.,9, 306 (1984).

    Google Scholar 

  55. J. Burgess, S. Radulović and F. Sanchez,Transition Met. Chem.,12, 529 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blandamer, M.J., Burgess, J., Elvidge, D.L. et al. Isomeric forms of tris-Schiff base complexes of iron(II): structure of the complex derived from 2-acetyl pyridine and methylamine. Transition Met Chem 16, 82–91 (1991). https://doi.org/10.1007/BF01127879

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127879

Keywords

Navigation