Skip to main content
Log in

Organometallic complex compounds, part 6(1). Property-specific ligand control of stability and reactivity of (1,3-dimethyl-η3-allyl)methylnickel-ligand complexes. Separation of electronic and steric effects

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The property-specific ligand control of 28 ligands on the decomposition temperatures in solution, measured by d.t.a. of a four-coordinate nickel(II)-complex is reported. A quantitative separation of electronic and steric effects by a multilinear regression analysis (75% electronic and 25% steric influence for the chosen ligands) is presented. The controlling effect of the selectivity on the decomposition (fraction of the C-C-linked product) (25 P-ligands) leads to an electronic: steric ratio of the property-specific ligand control of 55∶45 for the chosen ligands. An increase in the relative acceptor character of the P-ligands relatively destabilizes the complexes and thereby favours formation of a C-C-bond. An increase in steric hindrance also favours C-C-bond formation. A method for revising the steric parameter of P-ligands is presented and is used to correct the Θ-value of (PhCH2)3P is corrected to 135°. SCCC-MO-calculations for testing the chemical reasoning of the separated electronic and steric ligand property control are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organometallic complex compounds, Part 5: R. Berger, H. Schenkluhn and B. Weimann,Transition Met. Chem., 5, 272 (1981).

    Google Scholar 

  2. C. A. Tolman,Chem. Rev., 77, 313 (1977).

    Google Scholar 

  3. H. Schenkluhn, W. Scheldt, B. Weimann and M. Zähres,Angew. Chem. Int. Edit. Engl., 18, 401 (1979).

    Google Scholar 

  4. P. Heimbach, J. Kluth, H. Schenkluhn and B. Weimann,Angew. Chem. Int. Edit. Engl., 19, 569 (1980).

    Google Scholar 

  5. L. P. Hammett,Chem. Rev., 17, 125 (1935); R. W. Taft,Steric Effects in Organic Chemistry, Wiley, New York, 1956.

    Google Scholar 

  6. P. Heimbach and H. Schenkluhn,Topics in Current Chem., 94, 45 (1980);ibid, p. 102.

    Google Scholar 

  7. R. Berger, J. Kluth and H. Schenkluhn,Proc. Int. Conf. Phosphorus Chem., Sept. 17–21, 1979, Abstr. of Papers III, 342 (1979), Halle (Saale), GDR.

    Google Scholar 

  8. E. Koch,Chem. Ing. Tech., 37, 1004 (1965).

    Google Scholar 

  9. G. Hermann,Dissertation, TH Aachen 1963.

  10. H. H. Karsch, H. F. Klein and H. Schmidbauer;Angew. Chem. Int. Edit. Engl., 14, 637 (1975).

    Google Scholar 

  11. H. Schenkluhn,Dissertation, University of Bochum, (1971).

  12. W. A. Nugent and J. K. Kochi,J. Am. Chem. Soc., 98, 273 (1976).

    Google Scholar 

  13. F. Krech and A. Zschunke;Z. Anorg. Allg. Chem., 440, 45 (1978); F. Krech and K. Issleib,ibid., 425, 209 (1976).

    Google Scholar 

  14. T. Yamamoto, A. Yamamoto and S. Ikeda,J. Am. Chem. Soc., 93, 3350 (1971).

    Google Scholar 

  15. B. L. Barnett and C. Krüger,J. Organometal. Chem., 77, 407 (1974).

    Google Scholar 

  16. F. Brille, J. Kluth and H. Schenkluhn,J. Mol Catal., 5, 27 (1979).

    Google Scholar 

  17. C. A. Tolman,J. Am. Chem. Soc., 92, 2956 (1970).

    Google Scholar 

  18. A. Immirzi and A. Musco,Inorg. Chim. Acta, 25, 241 (1977).

    Google Scholar 

  19. J. D. Smith and J. D. Oliver,Inorg. Chem., 17, 2585 (1978).

    Google Scholar 

  20. G. Ferguson, P. J. Roberts, E. C. Alyea and M. Khan,Inorg. Chem., 17, 2965 (1978); E. C. Alyea, S. A. Dias, G. Ferguson and M. Parvez,Inorg. Chim. Acta, 37, 45 (1979).

    Google Scholar 

  21. L. E. Manzer and C. A. Tolman,J. Am. Chem. Soc., 97, 1955 (1975).

    Google Scholar 

  22. W. C. Trogler and L. G. Marzilli,J. Am. Chem. Soc., 96, 7589 (1974);Inorg. Chem., 14, 2942 (1975).

    Google Scholar 

  23. B. E. Mann, C. Masters, B. L. Shaw, R. M. Slade and R. E. Stainbank,Inorg. Nucl. Chem. Lett., 7, 881, (1971).

    Google Scholar 

  24. F. Brille, P. Heimbach and H. Schenkluhn, unpubl. results; see ref. 6, p. 102.

    Google Scholar 

  25. M. Wolfsberg, L. Helmholtz,J. Chem. Phys., 20, 837 (1952).

    Google Scholar 

  26. Recent review articles about applications of the EH-MO method, see: T. A. Albright,Trans. Am. Crystallogr. Assoc., 16, 35 (1980)

    Google Scholar 

  27. D. M. P. Mingos,Trans. Am. Crystallogr. Assoc., 16, 17 (1980).

    Google Scholar 

  28. F. D. Mango, J. H. Schachtschneider, Catalysis of Symmetry Forbidden Reactions, in G. N. Schrauzer (Ed.),Transition Metals in Homogeneous Catalysis, New York, 1971.

  29. H. Basch, A. Viste and H. B. Gray,J. Chem. Phys., 44, 10 (1966).

    Google Scholar 

  30. J. W. Richardson, W. C. Nieuwpoort and R. R. Powell,J. Chem. Phys., 35, 1057 (1962);J. Chem. Phys., 38, 796 (1963).

    Google Scholar 

  31. E. Clementi and D. L. Raimondi,J. Chem. Phys., 38, 2686 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenkluhn, H., Berger, R., Pittel, B. et al. Organometallic complex compounds, part 6(1). Property-specific ligand control of stability and reactivity of (1,3-dimethyl-η3-allyl)methylnickel-ligand complexes. Separation of electronic and steric effects. Transition Met Chem 6, 277–287 (1981). https://doi.org/10.1007/BF00620746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620746

Keywords

Navigation