Skip to main content
Log in

Kinetics and mechanism of the reactions ofcis-tetraaminediaqua-cobalt(III) with nitrite, azide and salicylate ions in aqueous acidic media

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Kinetic studies of the anation of the title complex by NO 2 show that it occurs in a stepwise manner leading to thecis-dinitro-complex both steps having a common rate equation:-d[complex]/dt = a[NO 2 ]/{[NO 2 ] + b}. The variation ofpseudo-first-order rate constant (kobs) with [NO 2 ] indicates that the reaction proceeds through ion-pair interchange path. Activation parameters calculated by the Eyring equation are: ΔH 1 = (65±7) kJ mol−1 and ΔS 1 = (−82±11) JK−1 mol−1 for the formation of [Co(NH3)4(NO2)(H2O)]2+, and ΔH 2 = (97±1) kJ mol−1 and ΔS 2 = (6±2) JK−1 mol−1 for the formation of [Co(NH3)4(NO2)2]+. Anation of the title complex by N 3 at pH 4.1 also occurs in a stepwise manner ultimately producing thecis-diazido species. At a fixed pH the reaction shows a first-order dependence on [N 3 ] for each step. pH-variation studies at a fixed [N 3 ] show that the hydroxoaqua-form of the complex reactsca. 16 times faster than the diaqua form. Evidence is presented for an ion-pair preequilibrium at high ionic strength (I = 2.0 mol dm−3). Activation parameters obtained from temperature variation studies are: ΔH 1 = (121±1) kJ mol−1 and ΔS 1 = (104±3) JK−1 mol−1 (for the first step anation), and ΔH 2 = (111±2) kJ mol−1 and ΔS 2 = (74±9) JK−1 mol−1 (for the second step anation). The reaction ofcis-tetraaminediaquacobalt(III) ion with salicylate (HSal) has been studied in aqueous acidic medium in the temperature range 39.8–58.2°C. The reaction is biphasic corresponding to the anation of two salicylate ions. The kinetic results for the first phase reaction are compatible with the equation: kobs = kIPQ[HSal]/(1 + Q[HSal]) where Q denotes ion-pair formation constant and kIP is the first-order rate constant for the interchange reaction. The activation parameters obtained from the temperature dependence of rate are: ΔH = (138±3) kJ mol−1 and ΔS = (135±4) JK−1 mol−1. The reaction seems to take place by a dissociative interchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Basolo and R. G. Pearson,Mechanisms of Inorganic Reactions, 2nd Edit., Wiley, New York, 1967, pp. 124–246.

    Google Scholar 

  2. C. H. Longford and H. B. Gray,Ligand Substitution Processes, Benjamin, New York, 1966, pp. 55–101.

    Google Scholar 

  3. R. G. Wilkins,The Study of Kinetics and Mechanisms of Reactions of Transition Metal Complexes, Allyn and Bacon, Boston, 1974, pp. 181–220.

    Google Scholar 

  4. M. B. Davies,J. Inorg. Nucl. Chem., 43, 1277 (1981).

    Google Scholar 

  5. J. Springborg and C. E. Schaffer,Inorg. Synth., 18, 83 (1978).

    Google Scholar 

  6. G. B. Kauffman, S. F. Abbott, S. E. Clark, J. M. Gibson and R. D. Meyer,Inorg. Synth., 18, 69 (1978).

    Google Scholar 

  7. M. Linhard and M. Weigel,Z. Anorg. Allgm. Chem., 267, 121 (1951).

    Google Scholar 

  8. Y. Shimura and R. Tsuchida,Bull. Chem. Soc. Jpn., 29, 311 (1956).

    Google Scholar 

  9. G. T. Morgan and J. D. M. Smith,J. Chem. Soc., 1956 (1922).

  10. Y. Yamamoto, K. Ito, H. Yoneda and M. Mori,Bull. Chem. Soc. Jpn., 40, 2580 (1967).

    Google Scholar 

  11. J. A. Weyh and R. E. Hamm,Inorg. Chem., 8, 2298 (1969).

    Google Scholar 

  12. M.C. Ghosh and P. Banerjee,Bull. Chem. Soc. Jpn., 56, 2871 (1983).

    Google Scholar 

  13. G. Schwarzenbach, J. Boesch and H. Egli,J. Inorg. Nucl Chem., 33, 2141 (1971).

    Google Scholar 

  14. L.G. Sillen and A. E. Martell (Eds.) inStability Constants of Metal-ion Complexes, The Chemical Society, London (1964), Special Publication No. 17, pp. 55, 56.

    Google Scholar 

  15. F. Basolo, B. D. Stone, J. G. Bergmann and R. G. Pearson,J. Am. Chem. Soc., 76, 3079 (1954).

    Google Scholar 

  16. R. G. Pearson, P. M. Henry, J. G. Bergmann and F. Basolo,J. Am. Chem. Soc., 76, 5920 (1954).

    Google Scholar 

  17. D. N. Hague and J. Halpern,Inorg. Chem., 6, 2059 (1967).

    Google Scholar 

  18. S. M. Abdulnour and R. K. Murmann,J. Inorg. Nucl Chem., 32, 3617 (1970).

    Google Scholar 

  19. H. Goff, S. Kidwell, J. Lauher and R. K. Murmann,Inorg. Chem., 12, 2631 (1973).

    Google Scholar 

  20. O. Nor and A. G. Sykes,J. Chem. Soc., Dalton Trans., 1232 (1973.

  21. C. Chatterjee and A. K. Bali,J. Coord. Chem., 11, 179 (1981).

    Google Scholar 

  22. M. L. Tobe,Inorg. Chem., 7, 1260 (1968).

    Google Scholar 

  23. Ref. 1, p. 203.

    Google Scholar 

  24. T. W. Swaddle and G. Guastalla,Inorg. Chem., 8, 1604 (1969).

    Google Scholar 

  25. J. J. Christensen, L. D. Hansen and R. M. Izatt,Hand Book of Proton Ionisation Heats and Related Thermodynamic Quantities, Wiley Interscience, New York, 1976.

    Google Scholar 

  26. A. G. Beaumont, R. D. Gillards and J. R. Lyons,J. Chem. Soc. (A), 1361 (1971).

  27. A. C. Dash and B. Mohanty,J. Inorg. Nucl. Chem., 39, 1179 (1977).

    Google Scholar 

  28. A. C. Dash and B. Mohanty,J. Inorg. Nucl. Chem., 41, 1053 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M.C., Bhattacharya, P. & Banerjee, P. Kinetics and mechanism of the reactions ofcis-tetraaminediaqua-cobalt(III) with nitrite, azide and salicylate ions in aqueous acidic media. Transition Met Chem 9, 68–73 (1984). https://doi.org/10.1007/BF00619005

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619005

Keywords

Navigation