Skip to main content
Log in

Regulation of expression of transgenes in developing fish

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The transcriptional regulatory elements of the β-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the β-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp β-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of β-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enchancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, S.P., Jantzen, H.-M. and Tjian, R. (1990) Assembly of alternative multiprotein complexes directs rRNA promoter selectivity.Genes Dev. 4, 943–54.

    PubMed  Google Scholar 

  • Boxer, L.M., Prywes, R., Roeder, R.G. and Kedes, L. (1989) The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor.Mol. Cell. Biol. 9, 512–22.

    Google Scholar 

  • Chow, K.-L. and Schwartz, R.J. (1990) A combination of closely associated positive and negativecis-acting promoter elements regulates transcription of the skeletal α-actin gene.Mol. Cell. Biol. 10, 528–38.

    PubMed  Google Scholar 

  • DePonti-Zilli, L., Seiler, Tuyns, A. and Paterson, B.M. (1988) A 40-base-pair sequence in the 3′ end of the β-actin gene regulates β-actin mRNA transcription during myogenesis.Proc. Natl Acad. Sci. USA 85, 1389–93.

    PubMed  Google Scholar 

  • Du, S.J., Gong, Z., Fletcher, G.L., Shears, M.A., King, M.J., Idler, D.R. and Hew, C.L. (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all-fish” chimeric growth hormone gene construct.Bio/Technology 10, 176–81.

    Article  PubMed  Google Scholar 

  • Fletcher, G.L. and Davies, P.L. (1991) Transgenic fish for aquaculture.Genetic Engineering 13, 331–70.

    PubMed  Google Scholar 

  • Friedenreich, H. and Schartl, M. (1990) Transient expression directed by homologous and heterologous promoter and enhancer sequences in fish cells.Nucl. Acids Res. 18, 3299–305.

    PubMed  Google Scholar 

  • Gong, Z., Hew, C.H. and Vielkind, J.R. (1991) Functional analysis and temporal expression of promoter regions from fish antifreeze protein genes in transgenic Japanese medaka embryos.Mol. Mar. Biol. Biotech. 1, 64–72.

    Google Scholar 

  • Gorman, C.M., Moffat, L.F. and Howard, B.H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.Mol. Cell. Biol. 2, 1044–51.

    PubMed  Google Scholar 

  • Hackett, P.B. (1992) The molecular biology of transgenic fish. In Hochachka, P. and Mommsen, T., eds,The Biochemistry and Molecular Biology of Fishes. Volume 2 (in press).

  • Hew, C.L. (1989) Transgenic fish: present status and future directions.Fish Physiol. Biochem. 7, 409–13.

    Google Scholar 

  • Hew, C.L., Trinh, K.Y., Du, S.J. and Song, S. (1989) Molecular cloning and expression of salmon pituitary hormones,Fish Physiol. Biochem. 7, 375–80.

    Google Scholar 

  • Holtreter, J. (1931) Uber die isolierter teile des amphibienkeimes. II. Zuchtung von keimen und keimteilen in salzlosung.Wilhelm Roux' Archiv fur entwicklungsmechanik der organismen. 124, 404–66.

    Article  Google Scholar 

  • Kawamoto, T., Makino, K., Niwa, H., Sugiyama, H., Kimura, S., Amenmura, M., Nakata, A. and Kakunaga, T. (1988) Identification of human β-actin enhancer and its binding factor.Mol. Cell. Biol. 8, 267–72.

    PubMed  Google Scholar 

  • Kimmel, C.B. (1989) Genetics and early development of zebrafish.Trends Genet. 5, 283–8.

    Article  PubMed  Google Scholar 

  • Liu, Z., Zhu, Z., Roberg, K., Faras, A.J., Guise, K.S., Kapuscinski, A.R. and Hackett, P.B. (1990a) The isolation and characterization of the β-actin gene of carp (Carpinus carpio).DNA Sequence 1, 125–36.

    PubMed  Google Scholar 

  • Liu, Z., Moav, B., Faras, A.J., Guise, K.S., Kapuscinski, A.R. and Hackett, P.B. (1990b) Functional analysis of elements affecting expression of the β-actin gene of carp.Mol. Cell. Biol. 10, 3432–40.

    PubMed  Google Scholar 

  • Liu, Z., Moav, B., Faras, A.J., Guise, K.S., Kapuscinski, A.R. and Hackett, P.B. (1990c) Development of vectors for transgene expression in fish.Bio/Technology 8, 1268–72.

    Article  PubMed  Google Scholar 

  • Liu, Z., Moav, B., Faras, A.J., Guise, K.S., Kapuscinski, A.R. and Hackett, P.B. (1991) Importance of theCArG box in regulation of β-actin-encoding gene.Gene 108, 211–17.

    Article  PubMed  Google Scholar 

  • Minty, A. and Kedes, L. (1986) Upstream regions of the human cardiac actin gene that modulate its transcription in mouse cells: Presence of an evolutionarily conserved repeated motif.Mol. Cell. Biol. 6, 2125–36.

    PubMed  Google Scholar 

  • Mitchell, P.J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins.Science 245, 371–8.

    PubMed  Google Scholar 

  • Moav, B., Liu, Z., Moav, N., Gross, M.L., Kapuscinski, A.R., Faras, A.J., Guise, K.S. and Hackett, P.B. (1992a) Expression of heterologous genes in transgenic fish. Hew, C. and G.L. Fletcher, eds, InTransgenic Fish pp. 121–140. World Scientific Pub. Co.

  • Moav, B., Liu, Z., Groll, Y. and Hackett, P.B. (1992b) Selection of promoters of transgenic fish.Mol. Mar. Biol. Biotech. 1, 338–45.

    Google Scholar 

  • Ng, S.-Y., Gunning, P., Liu, S.-H., Leavitt, J. and Kedes, L. (1989) Regulation of the human β-actin promoter by upstream and intron domains.Nucl. Acids Res. 17, 601–15.

    PubMed  Google Scholar 

  • Orita, S., Makino, K., Kawamoto, T., Niwa, H., Sugiyama, H. and Kakunaga, T. (1989) Indentification of a site that mediates transcriptional response of the human β-actin gene to serum factors.Gene 7, 13–9.

    Google Scholar 

  • Petropoulos, C.J., Rosenberg, M.P., Jenkins, N.A., Copeland, N.G. and Hughes, S.H. (1989) The chicken skeletal muscle α-actin promoter is tissue specific in transgenic mice.Mol. Cell. Biol. 9, 3785–92.

    PubMed  Google Scholar 

  • Pinkert, C.A., Ornitz, D.H., Brinster, R.L. and Palmiter, R.D. (1987) An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liverspecific expression in transgenic mice.Genes Dev. 1, 268–76.

    PubMed  Google Scholar 

  • Powers, D. (1989) Fish as model systems.Science 246, 352–8.

    PubMed  Google Scholar 

  • Ptashne, M. (1988) How eukaryotic transcriptional activators work.Nature 335, 683–9.

    Article  PubMed  Google Scholar 

  • Rossant, J. and Hopkins, N. (1992) Of fin and fur: mutational analysis of vertebrate embryonic development.Genes Dev. 6: 1–13.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual. Cold Spring Harbor NY: Cold Spring Harbor, Laboratory Press.

    Google Scholar 

  • Schartl, M., Wittbrodt, J., Maueler, W., Raulf, F., Adam, D., Hannig, G., Telling, A., Storch, F., Andexinger, S. and Robertson, S.M. (1990) In Schroder, J.H. and Schartl, M., eds,New Trends in Icthyology, Parey Verlag (in press).

  • Schwab, M. (1987) Oncogenes and tumor suppressor genes inXiphophorus.Trends Genet. 3, 38–42.

    Article  Google Scholar 

  • Seiler-Tuyns, A., Eldrige, J.D. and Paterson, B.M. (1984) Expression and regulation of chicken actin genes introduced into mouse myogenic and nonmyogenic cells.Proc. Natl Acad. Sci. USA 81, 2980–4.

    PubMed  Google Scholar 

  • Shears, M.A., Fletcher, G.L., Hew, C.L., Gauthier, S. and Davies, P.L. (1991) Transfer, expression, and stable inheritance of antifreeze protein genes in Atlantic salmon (Salmo salar).Mol. Mar. Biol. Biotech. 1, 58–63.

    Google Scholar 

  • Subramaniam, M., Schmidt, L.J., Crutchfield, C.E. and Getz, M.J. (1989) Negative regulation of serum-responsive enhancer elements.Nature 340, 64–6.

    Article  PubMed  Google Scholar 

  • Swift, G.H., Kruse, F., MacDonald, R.J. and Hammer, R.E. (1989) Differential requirements for cell-specific elastase I enhancer domains in transfected cells and transgenic mice.Genes Dev. 3, 687–96.

    PubMed  Google Scholar 

  • Tronche, F., Rollier, A., Bach, I., Weiss, M.C. and Yaniv, M. (1989) The rat albumin promoter: cooperation with upstream elements is required when binding of AFP/HNF1 to the proximal elements is partially impaired by mutation or bacterial methylation.Mol. Cell. Biol. 9, 4759–66.

    PubMed  Google Scholar 

  • Walsh, K. (1989) Cross-binding of factors to functionally diffrent promoter elements ofc-fos and skeletal actin genes.Mol. Cell. Biol. 9, 2191–201.

    PubMed  Google Scholar 

  • Westerfield, M. (1989)The Zebrafish Book, Eugene: University of Oregon Press.

    Google Scholar 

  • Westerfield, M., Wegner, J., Jegalian, B.G., DeRobertis, E.M. and Psuchel, A.W. (1992) Specific activation of mammalianHox promoters in mosaic zebrafish.Genes Dev. 6, 591–8.

    PubMed  Google Scholar 

  • Winkler, C., Vielkind, J.R. and Schartl, M. (1991) Transient expression of foreign DNA during embryonic and larval development of the medaka fish (Oryzias latipes).Mol. Gen. Genet. 226, 129–40.

    Article  PubMed  Google Scholar 

  • Xiong, F., Chin, R.A. and Hew, C.L. A gene encoding chinook salmon (Oncorhynchus tschawytscha) prolactin: gene structure and potentialcis-acting regulatory elements. (1992)Mol. Mar. Biol. Biotech. 1, 155–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moav, B., Liu, Z., Caldovic, L.D. et al. Regulation of expression of transgenes in developing fish. Transgenic Research 2, 153–161 (1993). https://doi.org/10.1007/BF01972609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972609

Keywords

Navigation