Skip to main content
Log in

BIOLOGICAL PROCESSES: THE EFFECTS OF INITIAL pH, PERCENTAGE INOCULUM AND NUTRIENT ENRICHMENT ON THE SOLUBILIZATION OF SEDIMENT BOUND METALS

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Biological solubilization of metals in highly contaminated sediments (Lachine Canal, Montreal, P.Q., Canada) was tested in 500 mL batches. The biological process uses the leaching capacity of Thiobacilli. Batch experiments were performed to determine the influence of initial pH, the percentage of inoculum, and the addition of nitrogen and phosphate on the efficiency of the process. Similar metal recoveries were obtained at either of the initial pH values (pH 4.0 and pH 4.5). The addition of 20% inoculum (v/v) appears to result in acceptable yields over a short time period (24–48 hours). Solubilization of Cu is strongly correlated with the presence of bacteria (r2 increase with time up to 0.90 after 53h). In the case of Zn (within first 6 hours) and Pb (at the beginning), the chemical environment appears to be the main factor controlling solubilization of these elements (r2 up to 0.99). The addition of nutrients had no affect on the production of Thiobacilli, but the addition of NH4 reduced the solubilization of Zn, Pb (r2 up to 0.90) and at the beginning, the solubilization of Cu (r2=0.67). While the addition of PO4 3- diminished the solubilization of Zn, Pb and Cu (r2 up to 0.96). Upon addition of substrate (FeSO 4.7H2), the growth of Thiobacilli already present in the sediments is favored. The application of this process to sediments appears feasible, as Zn and Cu levels were at acceptable levels following treatment. Further studies are necessary to improve the removal of Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1986). Methods of Soil Analysis-Physical and Mineralogical Methods, Second Edition. In: Methods of Soil Analysis, part 1. American Society of Agronomic Inc. Soil Science Society of America Inc., Eds Arnold Klute. p. 404.

  • APHA (1985). Standards Methods for the Examination of Water and Wastewater, 16th edition. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Antoun, H.: 1986, Science du sol. Faculté des sciences de l'agriculture et de l';alimentation. Département des sols, Université Laval, p. 5-5 - 5-9.

  • Bastille C., St-Pierre S. et Dubreuil B.: 1989, Manuel des méthodes de laboratoire, juin 1989, INRS-Eau, 2700 rue Einstein, Sainte-Foy, (Qc). G1P 3W, p. 284.

  • Blais, J. F., Tyagi, R. D., Auclair, J. C. and Huang C. P.: 1992, Wat. Sci. Tech. 26(1-2), 197-206.

    Google Scholar 

  • Brierley C. L.: 1982, ‘Microbiological Mining’, Sc. American 247: 44-53.

    Google Scholar 

  • Brierley C. L.: 1978, Bacterial leaching. CRC Critical Reviews in Microbiology 6, pp. 207-262.

    Google Scholar 

  • Bosecker K. and Kürsten M.: 1978, Process Biochemestry 13(2), 2-4.

    Google Scholar 

  • Campbell, P. G. C., Lewis, A. G., Chapman, P. M., Crowder, A. A., Fletcher, N. K., Imber, B., Luoma, S. N., Stokes, P. M. and Winfrey, M.: 1988, ‘Biological Available Metals in Sediments’, In: National Research Council of Canada, NRCC27694, p. 298.

  • Chartier, M.: 1993, Développement d'un procédé pour l'enlèvement des métaux lourds dans les sédiments, Mémoire de maîtrise, INRS-Eau, Université du Québec, Sainte-Foy, Québec, 550 p.

  • Couillard, D.: 1982, Can. J. Earth Sci. 19(7), 1492-1506.

    Google Scholar 

  • Couillard, D.: 1980, Can. Wat. Resour. J. 5(4), 55-81.

    Google Scholar 

  • Couillard, D. and Chartier, M.: 1994, Revue des Sciences de l'eau 7, 251-268.

    Google Scholar 

  • Couillard, D. and Mercier, G.: 1993, Wat. Res. 27(7), 1227-1236.

    Google Scholar 

  • Couillard, D., Chartier, M. et Mercier, G.: 1992, Optimisation de la solubilisation biologique des métaux lourds dans les boues aérobies en mode cuvée. Rapport scientifique no 348, INRS-Eau, Université du Québec, pp. 212.

  • Couillard, D., Chartier, M. and Mercier, G.: (1991a), Bioresour. Technol. 36, 293-302.

    Google Scholar 

  • Couillard, D., Chartier, M. and Mercier, G.: (1991b), Envir. Technol. Lett. 12, 1095-1105.

    Google Scholar 

  • Couillard, D. and Mercier, G.: 1991, Wat. Res. 25, 211-218.

    Google Scholar 

  • Couillard, D. and Chartier, M.: 1991, J. of Biotechnol. 20, 163-180.

    Google Scholar 

  • Couillard, D. and Mercier, G.: 1990a, Envir. Pollut. 66: 237-252.

    Google Scholar 

  • Couillard, D. and Mercier, G.: 1990b, Can. J. Chem. Engrs. 69, 779-787.

    Google Scholar 

  • Couillard, D., Mercier, G. and Tyagi, R.D.: 1988, Problématique des métaux lourds dans les boues résiduaires et revue de littérature sur les méthodes d'enlèvement de ces métaux, Rapport scientifique no 262, INRS-Eau, Université du Québec, pp. 267.

  • Dugan, P.R. and Apel, W. A.: 1978, ‘Microbiological Desulfurization of Coal’, In: Metall. Application of Bacterial Leaching and Related Microbiological Phenomena, Eds Academic press, New York. pp. 223-250.

    Google Scholar 

  • Environnement Canada: 1978, Plan d'utilisation des matériaux dragués dans le fleuve St-Laurent, Annexe no 6, Rapport soumis au comité d'étude sur le fleuve St-Laurent par la direction générale des eaux intérieures, p. 173.

  • Guay, R., Silver, M. and Torma, A.E.: 1976, European J. Appl. Microbiol. 3, 157-167.

    Google Scholar 

  • Guay, R., Torma, A. E. and Silver, M.: 1975, Annales de Microbiologie 126B, 209-219.

    Google Scholar 

  • Ingledew, J. W.: 1982, Biochimica et Biophysica Acta 683, 89-117.

    Google Scholar 

  • Kelly, D. P.: 1982, Biochemestry of the Chemolithotropic Oxydation of Organic Sulphur', In: Philosophy Trans Royal Soc. of London B298, 499-528.

    Google Scholar 

  • Lacey, D. T. and Lawson, F.: 1970, Biotechnol. Bioeng. 12, 29.

    Google Scholar 

  • Leving: 1982, The Ecological Consequences of Dredging and Dredge Spoil Disposal in Canadian Waters. NRCC #18130, p. 140.

  • Ludwig, D. D., Sherrard, J. H. and Amende, R.A.: 1989, J. Wat. Pollut. Contr. Fed. 61(11/12), 1666-1672.

    Google Scholar 

  • Lundgren, D. G. and Silver, M.: 1980, Ann. Rev. Microbiol. 34, 263-283.

    Google Scholar 

  • Luoma, S. N.: 1989, Hydrobiol. 176/177, 379-396.

    Google Scholar 

  • McCready, R. G. L., Wadden, D. and Marchbank, A.: 1986, Hydrometallurgy 17, 61-71.

    Google Scholar 

  • Mercier, G.: 1988, L';extraction biologique des métaux lourds des boues anaérobies d'épuration, Mémoire de maîtrise, INRS-Eau, Université du Québec, Ste-Foy, Québec, p. 285.

  • Murr, L. E.: 1982, Biotech. and Bioengng, XXIV, 743-748.

    Google Scholar 

  • Piché, I.: 1989, Recherche d'un substrat économique pour la solubilisation des métaux lourds dans les boues résiduaires, Mémoire de maîtrise, INRS-Eau, Université du Québec, Ste-Foy, Québec, p. 179.

  • Schecher, W.D. and McAvoy, D. C.: 1991, MINEQL+: A Chemical Equilibrum Program for Personal Computers. Environmental Research Software, version 2.1, p. 90.

  • Shea, D.: 1988, Envir. Sci. Technol. 22(11), 1256-1261.

    Google Scholar 

  • Smith, J. R., Luthy, R. G. and Middleton, A.C.: 1988, Journal WPCF 60, 518-530.

    Google Scholar 

  • Torma, A. E.: 1986, Biohydrometallurgy as an Emerging Technology. Biotechnology and Bioengineering Symposium, No. 16: 49-63.

    Google Scholar 

  • Torma, A. E., Walden, C. C., Duncan, D. W. and Branion, R. M. R.: 1972, Biotechnology and Bioengineering 14, 777-786.

    Google Scholar 

  • Torma, A. E., Walden, C. C. and Branion, R. M. R.: 1970, Biotechnology and Bioengineering 12, 501-517.

    Google Scholar 

  • Wong, L. and Henry, J. G.: 1984, Water Science and Technology 17, 575-586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHARTIER, M., COUILLARD, D. BIOLOGICAL PROCESSES: THE EFFECTS OF INITIAL pH, PERCENTAGE INOCULUM AND NUTRIENT ENRICHMENT ON THE SOLUBILIZATION OF SEDIMENT BOUND METALS. Water, Air, & Soil Pollution 96, 249–267 (1997). https://doi.org/10.1023/A:1026472821060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026472821060

Navigation