Skip to main content
Log in

Dissipative hydrodynamic oscillators

VI.— Transverse interfacial oscillations not obeying the Laplace-Kelvin law

  • Published:
Il Nuovo Cimento D

Summary

Transverse oscillations of a deformable air-liquid interface not obeying the Laplace-Kelvin law are here studied, both numerically and analytically. Moreover, for a liquid layer of finite depth we also explore the competition of this mode of overstability and the onset of standard steady cellular Bénard-Marangoni convection. We provide threshold values and relevant Schmidt (Prandtl) and capillary number ranges for the experimental observation of this instability.

Riassunto

Qui sono studiate sia numericamente che analiticamente oscillazioni trasverse di un interfaccia aria-liquido deformabile che non seguono la legge di Laplace-Kelvin. Inoltre si ricerca anche per uno strato di liquido di profondità finita la competizione di questo modo di oscillazione crescente e l'insorgenza della convenzione standard cellulare costante di Bérnard-Marangoni. Si forniscono valori di soglia e notevoli varietà di numeri capillari e di Schmidt (Prandtl) per l'osservazione sperimentale di tale instabilità.

Резюме

Численно и аналитически исследуются осцилляции деформируемой границы раздела воздух-жидкость, которые не подчиняются закону Лапласа-Кельвина. Для слоя жидкости конечной глубины мы также исследуем конкуренцию этой моды колебательной неустойчивости и появление стандартной стационарной ячеистой конвенции Бенара-Марангони. Мы определяем пороговые значения и соответствующие области для числа Шмидта (Прандтля) и для капиллярного числа для экспериментального наблюдения этой неустоичнвости.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. A. Pearson:J. Fluid Mech.,4, 489 (1958).

    Article  MATH  ADS  Google Scholar 

  2. M. G. Velarde andC. Normand:Sci. Am.,243, 78 (1980).

    Article  Google Scholar 

  3. C. V. Sternling andL. E. Scriven:AIChE J.,5, 514 (1959).

    Article  Google Scholar 

  4. L. E. Scriven andC. V. Sternling:J. Fluid Mech.,19, 321 (1964).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. K. A. Smith:J. Fluid Mech.,24, 401 (1966).

    Article  ADS  Google Scholar 

  6. M. Bentwich:Appl. Sci. Res.,24, 305 (1971).

    MATH  MathSciNet  Google Scholar 

  7. P. L. T. Brian:AIChE J.,17, 765 (1971).

    Article  Google Scholar 

  8. P. L. T. Brian andJ. R. Ross:AIChE J.,18, 582 (1972).

    Article  Google Scholar 

  9. D. A. Nield:J. Fluid Mech.,19, 341 (1964).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. W. Zeren andW. C. Reynolds:J. Fluid Mech.,53, 305 (1972).

    Article  MATH  ADS  Google Scholar 

  11. J. C. Berg andA. Acrivos:Chem. Eng. Sci.,20, 737 (1965).

    Article  Google Scholar 

  12. A. Vidal andA. Acrivos:Indian Eng. Sci. Fund.,7, 53 (1968).

    Article  Google Scholar 

  13. A. Vidal andA. Acrivos:Phys. Fluids,9, 615 (1966).

    Article  ADS  Google Scholar 

  14. M. Takashima:J. Phys. Soc. Jpn.,50, 2475 (1981).

    Google Scholar 

  15. M. Takashima:J. Phys. Soc. Jpn.,50, 2751 (1981).

    Article  ADS  Google Scholar 

  16. Zh. Kozhoukharova andS. Slavchev:Arch. Mech. (Poland), to appear.

  17. H. Linde, P. Schwartz andH. Wilke: inDynamics and Instability in Fluid Interfaces, edited byT. S. Sørensen (Springer-Verlag, Berlin, 1979), p. 75–120, and references therein.

    Google Scholar 

  18. J. Reichenbach andH. Linde:J. Colloid Interface Sci.,84, 433 (1981).

    Article  Google Scholar 

  19. S. P. Lin andH. Brenner:J. Colloid Interface Sci.,85, 59 (1982).

    Article  Google Scholar 

  20. J. L. Castillo andM. G. Velarde:J. Non-Equilib. Thermodyn.,5, 111 (1980).

    Article  ADS  Google Scholar 

  21. J. L. Castillo andM. G. Velarde:J. Fluid Mech.,125, 463 (1982).

    Article  MATH  ADS  Google Scholar 

  22. J. L. Castillo andM. G. Velarde:J. Colloid Interface Sci.,108, 264 (1985).

    Article  Google Scholar 

  23. M. Hennenberg, P. M. Bisch, M. Vignes-Adler andA. Sanfeld: inDynamics and Instability in Fluid Interfaces, edited byT. S. Sørensen (Springer-Verlag, Berlin, 1979), 229–259, and references therein.

    Google Scholar 

  24. M. G. Velarde, P. L. Garcia-Ybarra andJ. L. Castillo:Physcochem. Hydrodyn.,9, 387 (1987).

    Google Scholar 

  25. X.-L. Chu andM. G. Velarde:Physicochem. Hydrodyn., to appear.

  26. X.-L. Chu andM. G. Velarde:J. Colloid Interfacie Sci., to appear.

  27. X.-L. Chu andM. G. Velarde:Nuovo Cimento D., submitted for publication.

  28. M. G. Velarde andX.-L. Chu:Phys. Scr. to appear.

  29. M. G. Velarde andX.-L. Chu:Phys. Lett. A,131, 430 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  30. M. G. Velarde andX.-L. Chu:Nuovo Cimento D, to appear.

  31. X.-L. Chu, A. Castellanos andM. G. Velarde:Nuovo Cimento D, to appear.

  32. R. S. Hansen andJ. Ahmad:Prog. Surf. Membr. Sci.,4, 1 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Address after March 1st, 1989, Physics Department, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, X.L., Velarde, M.G. Dissipative hydrodynamic oscillators. Il Nuovo Cimento D 11, 1631–1643 (1989). https://doi.org/10.1007/BF02451017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451017

PACS 47.20

PACS 47.25.Qv

Navigation