Skip to main content
Log in

Model for degradation of band gap photo-luminescence in GaAs

  • Published:
Il Nuovo Cimento D

Summary

Degradation of near band gap photo-luminescence emission in GaAs with time of exposure to low power, c.w. laser excitation at room temperature is quantitatively described by a model based on defect reactions that are promoted by trapping and recombination of excess carriers at nonradiative recombination sites. The proposed model accurately describes the observed degradation rate, its power and temperature dependence, as well as the absence of degradation at a surface with shallow ion implantation.

Riassunto

La diminuzione della luminescenza (vicino al band gap) nel GaAs durante illuminazione continua a bassa intensità e a temperatura ambiente è quantitativamente spiegata da un modello in cui le reazioni tra i difetti reticolari in prossimità della superficie sono promosse dall’intrappolamento e dalla ricombinazione delle cariche elettriche in centri di ricombinazione senza emissione luminosa. Il modello che proponiamo spiega accuratamente le osservazioni sperimentali: la velocità di diminuzione della luminescenza stessa, la sua dipendenza dall’intensità dell’illuminazione esterna e dalla temperatura e la mancata diminuzione della luminescenza quando il GaAs è impiantato a bassa profondità.

Резюме

Количественно описывается деградация фото-люминесцентного излучения вблизи запрещенной зоны в GaAs со временем экспозиции c.w.-лазерным возбуждением малой мощности при комнатной температуре с помощью модели, которая основана на реакции дефектов, которые стимулируют захват и рекомбинацию носителей в нерадиационных узлах рекомбинации. Предложенная модель описывает наблюдаемую интенсивность деградации, зависимость деградации от мощности и температуры, а также отсутствие деградации на поверхности в случае неглубокой имплантации ионов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Luciano andD. L. Kingston:Rev. Sci. Instrum.,49, 718 (1978).

    Article  ADS  Google Scholar 

  2. M. Yokogawa, S. Nishine, K. Matsumoto, Shin-Ichi Akai andH. Okada:Jpn. J. Appl. Phys.,23, 663 (1984).

    Article  Google Scholar 

  3. H. J. Hovel andD. Guidotti:IEEE Trans. Electron Devices,ED-32, 2331 (1985).

    Google Scholar 

  4. H. J. Hovel, M. Albert, D. Guidotti, E. Farrell andJ. Becker:Semi-Insulating III-V Materials (Ohmsha, Ltd., 1986), p. 97.

  5. D. Guidotti, H. J. Hovel, M. Albert andJ. Becker:Review of Progress in Quantitative Nondestructive Evaluation, Vol.6 B, edited byD. O. Thompson andD. E. Chimenti (Plenum Press, New York, N. Y., 1987), p. 1369.

    Google Scholar 

  6. W. Wettling andJ. Windscheif:Appl. Phys. A,40, 191 (1986).

    Article  ADS  Google Scholar 

  7. J. Marek, A. G. Wilke andR. Geiss:Appl. Phys. Lett.,49, 1732 (1986).

    Article  ADS  Google Scholar 

  8. D. Guidotti, E. Hasan, H. J. Hovel andM. Albert:Appl. Phys. Lett.,50, 912 (1987).

    Article  ADS  Google Scholar 

  9. T. Suzuki andM. Ogawa:Appl. Phys. Lett.,31, 473 (1977).

    Article  ADS  Google Scholar 

  10. H. Booyens, J. H. Basson, A. W. R. Leitch, M. E. Lee andC. M. Stander:Surf. Sci,130, 259 (1983).

    Article  Google Scholar 

  11. This temperature behavior was also independently observed by M. B. Johnson and coworkers (T. J. Watson, Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, Cal.) and reported to us by M.B.J. in private communications. Lack of temperature dependence at elevated temperatures in an inert atmosphere is reported byN. A. Ives, G. W. Stupian andM. S. Leung:Appl. Phys. Lett.,50, 256 (1987).

    Article  ADS  Google Scholar 

  12. The incident laser beam is assumed to have a cylindrically symmetric Gaussian power distribution. The spot size is taken at the 1/e 2 points as in ref. (8).

    Google Scholar 

  13. H. J. Leamy andL. C. Kimerling:J. Appl. Phys.,48, 2795 (1977).

    Article  ADS  Google Scholar 

  14. P. J. Dean andW. J. Choyke:Adv. Phys.,26, 1 (1977), and references therein.

    Article  ADS  Google Scholar 

  15. M. K. Sheinkman, N. E. Korsunskaya, I. V. Markevich andT. V. Torchinskaya:J. Phys. Chem. Solids,43, 475 (1982).

    Article  Google Scholar 

  16. L. C. Kimerling:Solid State Electron.,21, 1391 (1978), and references therein.

    Article  Google Scholar 

  17. J. R. Troxell, A. P. Chatterjee, G. D. Watkins andL. C. Kimerling:Phys. Rev. B,19, 5336 (1979).

    Article  ADS  Google Scholar 

  18. R. M. Feenstra andT. C. McGill:Phys. Rev. B,25, 6329 (1982).

    Article  ADS  Google Scholar 

  19. L. C. Kimerling andJ. L. Benton:Physica B&C,116, 297 (1983).

    Article  Google Scholar 

  20. P. G. Eliseev, I. N. Zavestovskaya andI. A. Poluéktov:Kvantovaya Electron., (Moscow),5, 203 (1978) [English translation:Sov. J. Quantum Electron.,8, 124 (1978)].

    Google Scholar 

  21. J. C. Bourgoin andJ. W. Corbertt:Radiat. Eff.,36, 157 (1978), and references therein.

    Google Scholar 

  22. J. C. Bourgoin andJ. W. Corbett:IEEE Trans. Nucl. Sci., NS-18, 11 (1971).

    ADS  Google Scholar 

  23. D. Stievenard andJ. C. Bourgoin:Phys. Rev. B,33, 8410 (1986).

    Article  ADS  Google Scholar 

  24. A. E. Kiv andF. T. Umarova:Fiz. Tekh. Poluprovodn.,4, 571 (1970) [English translation:Sov. Phys. Semicond.,4, 474 (1970)].

    Google Scholar 

  25. V. M. Lenchenko:Fiz. Tverd. Tela,11, 649 (1969) [English translation:Sov. Phys. Solid State,11, 649 (1969)].

    Google Scholar 

  26. G. H. Vineyard:Radiat. Eff.,29, 245 (1976).

    Google Scholar 

  27. Y. Nannichi, J. Matsui andK. Ishida:Jpn. J. Appl. Phys.,14, 1561 (1975).

    Article  Google Scholar 

  28. N. E. Korsunskaya, I. V. Markevich andM. K. Sheinkman:Phys. Status Solidi,13, 25 (1966).

    Google Scholar 

  29. N. E. Korsunskaya, I. V. Markevich andM. K. Sheinkman:Fiz. Tverd. Tala,10, 522 (1968) [English translation:Sov. Phys. Solid State,10, 409 (1968)].

    Google Scholar 

  30. M. K. Sheinkman, N. E. Korsunskaya, I. V. Markevich andT. V. Torchinskaya:Fiz. Tekh. Polyprovodn.,14, 438 (1980) [English translation:Sov. Phys. Semicond.,14, 259 (1980)].

    Google Scholar 

  31. H. Henry andD. V. Lang:Phys. Rev. B,15, 989 (1977).

    Article  ADS  Google Scholar 

  32. H. Sumi:Phys. Rev. B,27, 2374 (1983).

    Article  ADS  Google Scholar 

  33. V. Narayanamurti, R. A. Logan andM. A. Chin:Phys. Rev. Lett.,40, 63 (1978).

    Article  ADS  Google Scholar 

  34. D. V. Lang andL. C. Kimerling:Phys. Rev. Lett.,33, 489 (1974).

    Article  ADS  Google Scholar 

  35. D. V. Lang andL. C. Kimerling:Appl. Phys. Lett.,28, 248 (1976).

    Article  ADS  Google Scholar 

  36. D. V. Lang, L. C. Kimerling andS. Y. Leung:J. Appl. Phys.,47, 3587 (1976).

    Article  ADS  Google Scholar 

  37. J. Shirafuji, T. Kakiuchi, K. Oka andY. Inuishi:Jpn. J. Appl. Phys.,22, 1368 (1983).

    Article  Google Scholar 

  38. C. E. Barnes:Phys. Rev. B,1, 4735 (1970).

    Article  ADS  Google Scholar 

  39. G. C. Kuczynski andR. F. Hochman:Phys. Rev.,108, 946 (1957).

    Article  ADS  Google Scholar 

  40. G. C. Kuczynski, K. R. Iyer andC. W. Allen:J. Appl. Phys.,43, 1337 (1972).

    Article  ADS  Google Scholar 

  41. B. Monemar, R. M. Potemski, M. D. Small, J. A. Van Vechten andG. R. Woolhouse:Phys. Rev. Lett.,41, 260 (1978).

    Article  ADS  Google Scholar 

  42. K. Maeda andS. Takeuchi:J. Phys. (Paris) Coll.,44, C4–375 (1983).

    Google Scholar 

  43. K. Maeda, M. Sato, A. Kubo andS. Takeuchi:J. Appl. Phys.,54, 161 (1983).

    Article  ADS  Google Scholar 

  44. K. H. Küsters andH. Alexander:Physica B,116, 594 (1983).

    Article  Google Scholar 

  45. R. A. Vardanyan, V. Ya. Kravchenko andYu. A. Osip’yan:Pis’ma Ž. Ėksp. Teor. Fiz.,40, 248 (1984) [English translation:JETP Lett.,40, 1023 (1984)].

    ADS  Google Scholar 

  46. R. D. Gold andL. R. Weisberg:Solid State Electron.,7, 811 (1964).

    Article  Google Scholar 

  47. I. Hayashi:J. Phys. Soc. Jpn., Suppl. A,49, 57 (1980).

    Google Scholar 

  48. J. A. Van Vechten:J. Electrochem. Soc.,122, 423 (1975).

    Article  Google Scholar 

  49. J. A. Van Vechten:J. Electrochem. Soc.,122, 1556 (1975).

    Article  Google Scholar 

  50. J. A. Van Vechten:Physica B,116, 575 (1983).

    Article  Google Scholar 

  51. See, for example,C. L. Zipfel: inSemiconductors and Semimetals, Vol.22, edited byR. K. Willardson andA. C. Beer (Academic Press, New York, N. Y., 1985), p. 249.

    Google Scholar 

  52. M. S. Skolnick, L. J. Reed andA. D. Pitt:Appl. Phys. Lett.,44, 447 (1984).

    Article  ADS  Google Scholar 

  53. J. Jiménez, M. A. González, P. Hernández, J. A. de Saja andJ. Bonnafé:J. Appl. Phys.,57, 1152 (1985).

    Article  ADS  Google Scholar 

  54. H. J. Queisser:Appl. Phys. Lett.,46, 757 (1985).

    Article  ADS  Google Scholar 

  55. C. S. Hong andH. L. Hwang:Appl. Phys. Lett.,49, 645 (1986).

    Article  ADS  Google Scholar 

  56. M. Stutzmann, W. B. Jackson andC. C. Tsai:Phys. Rev. B,32, 23 (1985).

    Article  ADS  Google Scholar 

  57. S. Chandrasekhar:Rev. Mod. Phys.,15, 1 (1943).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. A. M. Barnett: inSemiconductors and Semimetals, edited byR. K. Willardson andA. C. Beer Vol.6 (Academic Press, New York, N. Y., 1970), p. 141.

    Google Scholar 

  59. D. Pooley andW. A. Runciman:Solid State Commun.,4, 351 (1966).

    Article  Google Scholar 

  60. F. Seitz andJ. S. Koehler:Solid State Phys.,2, 351 (1956).

    Google Scholar 

  61. H. Sumi:Phys. Rev. B,29, 4616 (1984).

    Article  ADS  Google Scholar 

  62. J. D. Weeks, J. C. Tully andL. C. Kimerling:Phys. Rev. B,12, 3286 (1975).

    Article  ADS  Google Scholar 

  63. P. J. Robinson andK. A. Holbrook:Unimolecular Reactions (Wiley-Interscience, London, 1972), Chapt. 1, 3.

    Google Scholar 

  64. Y. Toyozawa:Physica B&C,116, 7 (1983).

    Article  Google Scholar 

  65. A. M. Stoneham:Rep. Prog. Phys.,44, 1251 (1981).

    Article  ADS  Google Scholar 

  66. M. K. Sheinkman:Pis’ma Ž Ėksp. Teor. Fiz.,38, 278 (1983) [English translation:JETP Lett.,38, 330 (1983)].

    ADS  Google Scholar 

  67. The term «phonon-kick» has also been used in conjunction with the thermal mechanism. It is used in ref. in a different context

    Article  ADS  Google Scholar 

  68. H. Sumi:Physica B,117–118, 197 (1983).

    Google Scholar 

  69. H. B. Bebb andE. W. Williams: inSemiconductors and Semimetals, edited byR. K. Willardson andA. C. Beer, Vol.8 (Academic Press, New York, N. Y., 1972), p. 1.

    Google Scholar 

  70. J. S. Blakemore andS. Rahimi: inSemiconductors and Semimetals, edited byR. K. Willardson andA. C. Beer Vol.20 (Academic Press, New York, N. Y., 1984), p. 233.

    Google Scholar 

  71. D. C. Look, P. W. Yu, W. M. Theis, W. Ford, G. Mathur, J. R. Sizelove, D. H. Lee andS. S. Li:Appl. Phys. Lett.,49, 1083 (1986).

    Article  ADS  Google Scholar 

  72. M. Nakajima, T. Sato, T. Inada, T. Fukuda andK. Ishida:Appl. Phys. Lett.,49, 1251 (1986).

    Article  ADS  Google Scholar 

  73. See, for example,C. G. Kirkpatrick, R. T. Chen, D. E. Holmes, P. M. Asbeck, K. R. Elliott, R. D. Fairman andJ. R. Oliver: inSemiconductors and Semimetals, edited byR. K. Willardson andA. C. Beer, Vol.20 (Academic Press, New York, N. Y., 1984), p. 159.

    Google Scholar 

  74. T. F. Kuech: IBM T.J. Watson Research Ctr., private communciations.

  75. A. S. Jordan, A. R. von Neida, R. Caruso andC. K. Kim:J. Electrochem. Soc.,121, 153 (1974).

    Google Scholar 

  76. D. von der Linde, J. Kuhl andH. Klingenberg:Phys. Rev. Lett.,44, 1505 (1980).

    Article  ADS  Google Scholar 

  77. E. W. Williams andR. A. Chapman:J. Appl. Phys.,38, 2547 (1967).

    Article  Google Scholar 

  78. J. Vilms andW. E. Spicer:J. Appl. Phys.,36, 2815 (1965).

    Article  Google Scholar 

  79. NeglectingB makes eq. (6) only approximately valid, however, the PL degradation characteristics calculated with this assumption should remain qualitatively correct.

  80. M. Gershenzon:Semiconductors and Semimetals, edited byR. K. Willardson andA. C. Beer, Vol.1 (Academic Press, New York, N. Y., 1967), p. 305.

    Google Scholar 

  81. In the presence of ambipolar diffusion it can be shown thatΓ 2 becomes proportional to [AN(t)]−3/2.

  82. R. M. Gibb, G. J. Rees, B. W. Thomas, B. L. H. Wilson, B. Hamilton, D. R. Wight andN. F. Mott:Philos. Mag.,36, 1021 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Summer student from the Materials Sciences Department at Massachusetts Institute of Technology, Cambridge, Mass., USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidotti, D., Hasan, E., Hovel, H.J. et al. Model for degradation of band gap photo-luminescence in GaAs. Il Nuovo Cimento D 11, 583–613 (1989). https://doi.org/10.1007/BF02457514

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457514

PACS 73.25

Navigation