Skip to main content
Log in

On parametric nonlinear programming

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this tutorial survey we study finite dimensional optimization problems which depend on parameters. It is our aim to work out several basic connections with different mathematical areas. In particular, attention will be paid to unfolding and singularity theory, structural analysis of families of constraint sets, constrained optimization problems and semi-infinite optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Ahlfors and L. Sario,Riemann Surfaces (Princeton University Press, 1960).

  2. E.L. Allgower and K. Georg, Predictor-corrector and simplicial methods for approximating fixed points and zero points of nonlinear mappings, in:Mathematical Programming, the State of the Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, 1983) pp. 15–56.

  3. E.L. Allgower and K. Georg,Introduction to Numerical Continuation Methods (Springer, to appear).

  4. E.L. Allgower and S. Gnutzmann, An algorithm for piecewise linear approximation of implicitly defined two-dimensional surfaces, SIAM J. Num. Anal. 24 (1987) 452–469.

    Google Scholar 

  5. E.L. Allgower and Ph.H. Schmidt, An algorithm for piecewise-linear approximation of an implicitly defined manifold, SIAM J. Num. Anal. 22 (1985) 322–346.

    Google Scholar 

  6. V.I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1983).

  7. V.I. Arnold,Catastrophe Theory (Springer, 1984).

  8. V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko,Singularities of Differentiable Maps I (Birkhäuser, Boston-Basel-Stuttgart, 1985).

    Google Scholar 

  9. J.-P. Aubin and F.H. Clarke, Multiplicateurs de Lagrange en optimization non convexe et applications, C.R. Acad. Sci. Paris 285, Série A (1977) 451–454.

    Google Scholar 

  10. J.-P. Aubin and I. Ekeland, Estimates of the duality gap in nonconvex optimization, Math. Oper. Res. 1 (1976) 225–245.

    Google Scholar 

  11. J.-P. Aubin and I. Ekeland,Applied Nonlinear Analysis (Wiley, 1984).

  12. G. Auchmuty, Duality for non-convex variational principles, J. Differential Equations 50 (1983) 80–145.

    Google Scholar 

  13. G. Auchmuty, Duality algorithms for smooth unconstrained optimization, in:Proc. Seminar on Computational Solution of Nonlinear Systems of Equations (Colorado State University, July 18–29, 1988) Preprint (1988), to appear inLectures in Applied Mathematics.

  14. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Non-Linear Parametric Optimization (Akademie-Verlag, Berlin, 1982).

    Google Scholar 

  15. B. Bank and R. Mandel,Parametric Integer Optimization (Akademie-Verlag, Berlin 1988).

    Google Scholar 

  16. J.F. Bard, Convex two-level optimization, Math. Programming 40 (1988) 15–27.

    Google Scholar 

  17. W. Barth, C. Peters and A. Van de Ven,Compact Complex Surfaces (Springer, 1984).

  18. G. Barthel, F. Hirzebruch and Th. Höfer,Geradenkonfigurationen und Algraische Flächen (Vieweg Verlag, Braunschweig-Wiesbaden, 1987).

    Google Scholar 

  19. J.H. Bigelow and N.Z. Shapiro, Implicit function theorems for mathematical programming and for systems of inequalities, Math. Programming 6 (1974) 141–156.

    Google Scholar 

  20. M.L. Bougeard, Morse theory for some lower-C 2 functions in finite dimensions, Math. Programming 41 (1988) 141–159.

    Google Scholar 

  21. D. Braess, Morse-Theorie für berandete Mannigfaltigkeiten, Math. Ann. 208 (1974) 133–148.

    Google Scholar 

  22. D. Braess,Nonlinear Approximation Theory (Springer, 1986).

  23. J. Brink-Spalink and H.Th. Jongen, Morse theory for optimization problems with functions of maximum type, Meth. Oper. Res. 31 (1979) 121–134.

    Google Scholar 

  24. Th. Bröcker and L. Lander,Differentiable Germs and Catastrophes, London Math. Society Lecture Note Series, vol. 17 (Cambridge University Press, 1975).

  25. B. Brosowski,Parametric Semi-Infinite Optimization (Peter Lang Verlag, Frankfurt a.M.-Bem-New York, 1982).

    Google Scholar 

  26. L.N. Bryzgalova, Singularities of the maximum of a parametrically dependent function, Funct. Anal. Appl. 11 (1977) no. 1, 49–51.

    Google Scholar 

  27. Y. Chabrillac and J.-P. Crouzeix, Definiteness and semidefiniteness of quadratic forms revisited, Linear Algebra Appl. 63 (1984) 283–292.

    Google Scholar 

  28. R.W. Chaney, Second-order necessary conditions in semismooth optimization, Math. Programming 40 (1988) 95–109.

    Google Scholar 

  29. F.H. Clarke, Generalized gradients and applications, Trans. Am. Math. Soc. 205 (1975) 247–262.

    Google Scholar 

  30. F.H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976) 167–174.

    Google Scholar 

  31. F.H. Clarke, On the inverse function theorem, Pacific J. Math. 64 (1976) 97–102.

    Google Scholar 

  32. F.H. Clarke, Optimal solutions to differential inclusions, J. Optim. Theory Appl. 19 (1976) 469–478.

    Google Scholar 

  33. F.H. Clarke, Generalized gradients of Lipschitz functionals, Advan. Math. 40 (1981) 52–67.

    Google Scholar 

  34. F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York-Chichester-Brisbane-Toronto-Singapore, 1983).

    Google Scholar 

  35. L. Collatz and W. Wetterling,Optimierungsaufgaben (Springer, 1971).

  36. R.W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974) 189–211.

    Google Scholar 

  37. A.P. Dempster, D.B. Rubin and R.K. Tsutakawa, Estimation in covariance components models, J. Am. Statist. Ass. 76 (1981) 341–353.

    Google Scholar 

  38. V.F. Demyanov and A.M. Rubinov, On quasidifferentiable mappings, Math. Operationsforsch. u. Statist., Ser. Optimization 14 (1983) 3–21.

    Google Scholar 

  39. A. Dimca,Topics on Real and Complex Singularities (Vieweg, Braunschweig-Wiesbaden, 1987).

    Google Scholar 

  40. S. Dolecki and S. Rolewicz, Exact penalties for local minima, SIAM J. Control Optim. 17 (1979) 596–606.

    Google Scholar 

  41. B.C. Eaves and J.A. Yorke, Equivalence of surface density and average directional density, Math. Oper. Res. 9 (1984) 363–375.

    Google Scholar 

  42. E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inventiones Math. 45 (1978) 139–174.

    Google Scholar 

  43. K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984) 519–537.

    Google Scholar 

  44. V.A. Fiacco,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1983).

    Google Scholar 

  45. A.V. Fiacco and J. Kyparisis, Sensitivity analysis in nonlinear programming under second order assumptions, in:Systems and Optimization, eds. A. Bagchi and H.Th. Jongen, Lecture Notes in Control and Information Sciences 66 (Springer, 1985) pp. 74–97.

  46. A.V. Fiacco and J. Kyparisis, Computable bounds on parametric solutions of convex problems, Math. Programming 40 (1988) 213–221.

    Google Scholar 

  47. A.V. Fiacco and G.P. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, 1968).

  48. F.R. Gantmacher,Matrizenrechnung, vol. 1 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1970).

    Google Scholar 

  49. J. Gauvin, A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming, Math. Programming 12 (1977) 136–138.

    Google Scholar 

  50. C.G. Gibson, K. Wirthmüller, A.A. du Plessis and E.J.N. Looijenga,Topological Stability of Smooth Mappings, Lecture Notes in Mathematics 552 (Springer, 1976).

  51. M. Golubitsky and V. Guillemin,Stable Mappings and Their Singularities (Springer, 1973).

  52. M. Golubitsky and D.G. Schaeffer,Singularities and Groups in Bifurcation Theory, vol. 1 (Springer, 1985).

  53. J. Guddat and F. Guerra Vazquez, Multiobjective optimization using pivoting and continuation methods, Preprint No. 143, Sektion Mathematik, Humboldt-Universität, East-Berlin (1987).

    Google Scholar 

  54. J. Guddat and H.Th. Jongen, Structural stability in nonlinear optimization, Optimization 18 (1987) 617–631.

    Google Scholar 

  55. J. Guddat, H.Th. Jongen and D. Nowack, Parametric optimization: pathfollowing with jumps, in:Approximation and Optimization, eds. A. Gómez, F. Guerra, M.A. Jiménez and G. López, Lecture Notes in Mathematics 1354 (Springer, 1988) 43–53.

  56. J. Guddat, H.Th. Jongen and J. Rueckmann, On stability and stationary points in nonlinear optimization, J. Austral. Math. Soc. Series B 28 (1986) 36–56.

    Google Scholar 

  57. S.-Å. Gustafson and K.O. Kortanek, Semi-infinite programming and applications, in:Mathematical Programming, the State of the Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, 1984) pp. 132–157.

  58. W.H. Hager, Lipschitz continuity for constrained processes, SIAM J. Control Optim. 17 (1979) 321–338.

    Google Scholar 

  59. S.-P. Han and O. Fujiwara, An inertia theorem for symmetric matrices and its applications to nonlinear programming. Linear Algebra Appl. 72 (1985) 47–109.

    Google Scholar 

  60. R.M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Am. J. Math. 102 (1980) 291–302.

    Google Scholar 

  61. D.A. Harville, Maximum likelihood approaches to variance component estimation and to related problems, J. Am. Statist. Assoc. 72 (1977) 320–340.

    Google Scholar 

  62. M. Hervé,Several Complex Variables, Local Theory (Oxford University Press, London, 1963).

    Google Scholar 

  63. R. Hettich and H.Th. Jongen, Semi-infinite programming: conditions of optimality and applications, in:Optimization Techniques, vol. 2, ed. J. Stoer, Lecture Notes in Control and Information Sciences 7 (Springer, 1978) pp. 1–11.

  64. R. Hettich and P. Zencke,Numerische Methoden der Approximation und semi-infiniten Optimierung (Teubner Studienbücher, Stuttgart, 1982).

    Google Scholar 

  65. J.-B. Hiriart-Urruty, Gradients généralisés de fonctions marginales, SIAM J. Control Optim. 16 (1978) 301–316.

    Google Scholar 

  66. J.-B. Hiriart-Urruty, Lipschitzr-continuity of the approximate subdifferential of a convex function, Math. Scand. 47 (1980) 123–134.

    Google Scholar 

  67. H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Preprint, University of Pisa (1973).

  68. M.W. Hirsch,Differential Topology (Springer, 1976).

  69. K. Jänich, Caustics and catastrophes, Math. Ann. 209 (1974) 161–180.

    Google Scholar 

  70. K. Jittorntrum, Accelerated convergence for the Powell/Hestenes multiplier method, Math. Programming 18 (1980) 197–214.

    Google Scholar 

  71. K. Jittorntrum, Solution point differentiability without strict complementarity in nonlinear programming, Math. Programming 21 (1984) 127–138.

    Google Scholar 

  72. H.Th. Jongen, Zur Geometrie endlichdimensionaler nichtkonvexer Optimierungsaufgaben, in:Numerische Methoden bei Optimierungsaufgaben 3, L. Collatz, G. Meinardus and W. Wetterling, eds., ISNM 36 (Birkhäuser, Basel-Stuttgart, 1977) pp. 111–136.

    Google Scholar 

  73. H.Th. Jongen, Parametric optimization: critical points and local minima, in:Proc. Seminar on Computational Solution of Nonlinear Systems of Equations, Colorado State University (July 18–29, 1988) Preprint No. 2, 1988, Lehrstuhl C für Mathematik (RWTH Aachen, West Germany, 1988) to appear in Lectures in Applied Mathematics.

    Google Scholar 

  74. H.Th. Jongen, P. Jonker and F. Twilt, On deformation in optimization, Meth. Oper. Res. 37 (1980) 171–184.

    Google Scholar 

  75. H.Th. Jongen, P. Jonker and F. Twilt, On one-parameter families of sets defined by (in)equality constraints, Nieuw Archief v. Wiskunde (3) XXX (1982) 307–322.

    Google Scholar 

  76. H.Th. Jongen, P. Jonker and F. Twilt,Nonlinear Optimization inn, vol. 1: Morse theory, Chebychev approximation (Peter Lang Verlag, Frankfurt a.M.-Bern-New York, 1983).

    Google Scholar 

  77. H.Th. Jongen, P. Jonker and F. Twilt,Nonlinear Optimization inn, vol. 2: Transversality, flows, parametric aspects (Peter Lang Verlag, Frankfurt a.M.-Bern-New York, 1986).

    Google Scholar 

  78. H.Th. Jongen, P. Jonker and F. Twilt, One-parameter families of optimization problems: equality constraints, J. Optim. Theory Appl. 48 (1986) 141–161.

    Google Scholar 

  79. H.Th. Jongen, P. Jonker and F. Twilt, Critical sets in parametric optimization, Math. Programming 34 (1986) 333–353.

    Google Scholar 

  80. H.Th. Jongen, P. Jonker and F. Twilt, Parametric optimization: the Kuhn-Tucker set, in:Parametric Optimization and Related Topics, J. Guddat, H.Th. Jongen, B. Kummer and F. Nožička, eds., (Akademie-Verlag, Berlin, 1987) pp. 196–208.

    Google Scholar 

  81. H.Th. Jongen, P. Jonker and F. Twilt, A note on Branin's method for finding the critical points of smooth functions, ibid.in:, pp. 209–218.

    Google Scholar 

  82. H.Th. Jongen, P. Jonker and F. Twilt, The continuous, desingularized Newton method for meromorphic functions, Acta Appl. Math. 13 (1988) 81–121.

    Google Scholar 

  83. H.Th. Jongen, D. Klatte and K. Tammer, Implicit functions and sensitivity of stationary points, Preprint No. 1, 1988, Lehrstuhl C für Mathematik (RWTH Aachen, West Germany, 1988) to appear in Math. Programming.

    Google Scholar 

  84. H.Th. Jongen, T. Moebert, J. Rueckmann and K. Tammer, On inertia and Schur complement in optimization, Linear Algebra Appl. 95 (1987) 97–109.

    Google Scholar 

  85. H.Th. Jongen, T. Moebert and K. Tammer, On iterated minimization in nonconvex optimization, Math. Oper. Res. 11 (1986) 679–691.

    Google Scholar 

  86. H.Th. Jongen and D. Pallaschke, On linearization and continuous selections of functions, Optimization 19 (1988) 343–353.

    Google Scholar 

  87. H.Th. Jongen and F. Twilt, On decomposition and structural stability in non-convex optimization, in:Numerische Methoden bei graphentheoretischen und kombinatorischen Problemen 2, L. Collatz, G. Meinardus and W. Wetterling, eds., ISNM 46 (Birkhäuser, Basel-Boston-Stuttgart, 1979) pp. 161–183.

    Google Scholar 

  88. H.Th. Jongen and G. Zwier, On the local structure of the feasible set in semi-infinite optimization, in:Parametric Optimization and Approximation, B. Brosowski and F. Deutsch, eds., ISNM 72 (Birkhäuser, Basel-Boston-Stuttgart, 1985) pp. 185–202.

    Google Scholar 

  89. H.Th. Jongen and G. Zwier, On regular semi-infinite optimization, in:Infinite Optimization E.J. Anderson and A.B. Philpott, eds., Lecture Notes in Econ. and Math. Systems 259 (Springer, 1985) pp. 53–64.

  90. H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems, Math. Programming 41 (1988) 73–96.

    Google Scholar 

  91. H. Kawasaki, The upper and lower second order directional derivatives of a sup-type function, Math. Programming 41 (1988) 327–339.

    Google Scholar 

  92. K.C. Kiwiel,Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics 1133 (Springer, 1985).

  93. M. Kojima, On the homotopic approach to systems of equations with separable mappings, Math. Programming Study 7 (1978) 170–184.

    Google Scholar 

  94. M. Kojima, Strongly stable stationary solutions in nonlinear programs, in:Analysis and Computation of Fixed Points, S.M. Robinson, ed. (Academic Press, New York, 1980) pp. 93–138.

    Google Scholar 

  95. M. Kojima and R. Hirabayashi, Continuous deformations of nonlinear programs, Math. Programming Study 21 (1984) 150–198.

    Google Scholar 

  96. M. Kojima and R. Saigal, On the number of solutions to a class of complementary problems, Math. Programming 21 (1981) 190–203.

    Google Scholar 

  97. B. Kummer, The inverse of a Lipschitz function in ℝn: complete characterization by directional derivatives, Preprint, Humboldt-University, Berlin, Department of Mathematics, PSF 1297, Berlin 1086 (1988).

    Google Scholar 

  98. S.S. Kutaladze and A.M. Rubinov, Minkowski duality and its applications, Russian Math. Surveys 27 (1972) 137–191.

    Google Scholar 

  99. J. Kyparisis and A.V. Fiacco, Generalized convexity and concavity of the optimal value function in nonlinear programming, Math. Programming 39 (1987) 285–304.

    Google Scholar 

  100. L.A. Ljusternik and W.I. Sobolew,Elemente der Funktionalanalysis (Akademie-Verlag, Berlin 1960).

    Google Scholar 

  101. S. Lojasiewicz, Ensemble semi-analytiques, Preprint, IHES, Bures-sur-Yvette, France (1965).

    Google Scholar 

  102. Y.-C. Lu,Singularity Theory and an Introduction to Catastrophe Theory (Springer, 1976).

  103. S. Lucidi, New results on a class of exact augmented Lagrangians, J. Optim. Theory Appl. 58 (1988) 259–282.

    Google Scholar 

  104. D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973).

    Google Scholar 

  105. L.J. Mancini and G.P. McCormick, Bounding global minima, Math. Oper. Res. 1 (1976) 50–53.

    Google Scholar 

  106. L. Markus, Catastrophes and economic equilibria, in:Calculus of Variations and Control Theory, D.L. Russel, ed., Math. Res. Center, Publ. 36 (Academic Press, New York, 1976) pp. 73–91.

    Google Scholar 

  107. V.I. Matov, Topological classification of germs of functions of maximum- and minimax-type for families of functions in general position, Uspehi Mat. Nauk 37 (1982) 167–168.

    Google Scholar 

  108. T. Matsumoto, S. Shindoh and R. Hirabayashi, Local linearization of feasible sets, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-210, Tokyo Institute of Technology (1988) submitted to J. Math. Anal. Appl.

  109. T. Matsumoto, S. Shindoh and R. Hirabayashi, A new characterization of Mangasarian-Fromovitz condition, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-214, Tokyo Institute of Technology (1988) submitted to SIAM J. Control Optim.

  110. T. Matsumoto, S. Shindoh and R. Hirabayashi, 1-determinacy of feasible sets, Preprint, Research Reports on Information Sciences, Series B, Operations Research, No. B-215, Tokyo Institute of Technology (1988) submitted to J. Control Optimiz.

  111. G.P. McCormick, Locating an isolated minimizer of a constrained nonconvex program, Math. Oper. Res. 5 (1980) 435–443.

    Google Scholar 

  112. G.P. McCormick,Nonlinear Programming: Theory, Algorithms, and Applications (Wiley, 1983).

  113. R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977) 959–972.

    Google Scholar 

  114. R. Mifflin, An algorithm for constrained optimization with semismooth function, Math. Oper. Res. 2 (1977) 191–207.

    Google Scholar 

  115. D. Milman, Eine geometrische Ungleichung und ihre Anwendung, in:General Inequalities 2 Proc. 2nd Int. Conf., Oberwolfach, 1978 (Birkhäuser, Basel-Boston-Stuttgart, 1980) pp. 357–366.

    Google Scholar 

  116. J. Milnor,Morse theory, Annals of Mathematics Studies, No. 51 (Princeton University Press, 1963).

  117. J. Milnor,Lectures on the h-Cobordism Theorem, Mathematical Notes 1 (Princeton University Press, 1965).

  118. J.M. Ortega and W.C. Rheinboldt,Iterative Solutions of Nonlinear Equations in Several Variables (Academic Press, 1970).

  119. D.V. Oullette, Schur complements and statistics, Linear Algebra Appl. 36 (1981) 187–295.

    Google Scholar 

  120. P.D. Panagiotopoulos,Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions (Birkhäuser, Boston-Basel-Stuttgart, 1985).

    Google Scholar 

  121. J.-P. Penot and M.L. Bougeard, Approximation and decomposition properties of some classes of locally d.c. functions, Math. Programming 41 (1988) 195–227.

    Google Scholar 

  122. A. Pommelet, Analyse convex et théorie de Morse, Dissertation, Université de Paris-Dauphine (1982).

  123. A.B. Poore and C.A. Tiahrt, Bifurcation problems in nonlinear parametric programming, Math. Programming 39 (1987) 189–205.

    Google Scholar 

  124. P.H. Rabinowitz,Minimax Methods in Critical Point Theory with Applications to Differential Equations, AMS-Regional Conference Series in Mathematics 65 (American Mathematical Society, Providence, Rhode Island, 1986).

    Google Scholar 

  125. A. Reinoza, Solving generalized equations via homotopies, Math. Programming 31 (1985) 307–320.

    Google Scholar 

  126. J. Renegar, Rudiments of an averaging case complexity theory for piecewise-linear path following algorithms, Math. Programming 40 (1988) 113–163.

    Google Scholar 

  127. S.M. Robinson, Stability theory for systems of inequalities, Part. II: differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976) 497–513.

    Google Scholar 

  128. S.M. Robinson, Generalized equations and their solutions, Part. I: basic theory, Math. Programming Study 10 (1979) 128–141.

    Google Scholar 

  129. S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980) 43–62.

    Google Scholar 

  130. S.M. Robinson, Generalized equations and their solutions, Part. II: applications to nonlinear programming, Math. Programming Study 19 (1982) 200–221.

    Google Scholar 

  131. S.M. Robinson, Generalized equations, in:Mathematical Programming, the State of the Art, A. Bachem, M. Grötschel and B. Korte, eds. (Springer, 1983) pp. 346–367.

  132. S.M. Robinson, Local structure of feasible sets in nonlinear programming, Part I: regularity, in:Numerical Methods, V. Pereyra and A. Reinoza, eds., Lecture Notes in Mathematics 1005 (Springer, 1983) pp. 240–251.

  133. R.T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Am. Math. Soc. 123 (1966) 46–63.

    Google Scholar 

  134. R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advan. Math. 15 (1975) 312–333.

    Google Scholar 

  135. R.T. Rockafellar, Augumented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976) 97–116.

    Google Scholar 

  136. Th. Rupp, Kontinuitätsmethoden zur Lösung einparametrischer semi-infiniter Optimierungsprobleme, Dissertation, Universität Trier, West Germany (1988).

    Google Scholar 

  137. S. Schecter, Structure of the first-order solution set for a class of nonlinear programs with parameters, Math. Programming 34 (1986) 84–110.

    Google Scholar 

  138. J. Semple and S. Zlobec, On the continuity of a Lagrangian multiplier function in input optimization, Math. Programming 34 (1986) 362–369.

    Google Scholar 

  139. D. Siersma, Singularities of functions on boundaries, corners, etc., Quarterly J. Math., Oxford Ser. (2) 32 (1981) 119–127.

    Google Scholar 

  140. J.E. Spingarn, On optimality conditions for structural families of nonlinear programming problems, Math. programming 22 (1982) 82–92.

    Google Scholar 

  141. S. Sternberg,Lectures on Differential Geometry (Prentice Hall, 1964).

  142. J.-J. Strodiot and V.H. Nguyen, On the numerical treatment of the inclusion 0 ∈ ∂f(x), in:Topics in Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang, eds. (Birkhäuser, Basel-Boston-Berlin, 1988) pp. 267–294.

    Google Scholar 

  143. A. Tannenbaum and Y. Yomdim, Robotic manipulators and the geometry of real semialgebraic sets, IEEE J. Robotics and Automation RA-3, 4 (1987) 301–307.

    Google Scholar 

  144. R. Thom,Stabilité Structurelle et Morphogénèse: Essai d'une Théorie Générale des Modèles (W.A. Benjamin, Reading, MA, 1972).

    Google Scholar 

  145. R. Thom, Sur le cut-locus d'une variété plongée, J. Differential Geometry 6 (1972) 577–586.

    Google Scholar 

  146. R. Thom, La théorie des catastrophes: état présent et perspectives, in:Dynamical systems — Warwick 1974, A. Manning, ed., Lecture Notes in Mathematics 468 (Springer, 1975) pp. 366–372.

  147. M.J. Todd, On triangulations for computing fixed points, Math. Programming 10 (1976) 322–346.

    Google Scholar 

  148. M.J. Todd, Exploiting structure in piecewise-linear homotopy algorithms for solving equations, Math. Programming 18 (1980) 233–247.

    Google Scholar 

  149. M.J. Todd, “Fat” triangulations, or solving certain nonconvex matrix optimization problems, Math. Programming 31 (1985) 123–136.

    Google Scholar 

  150. L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Am. Math. Soc. 15 (1986) 189–193.

    Google Scholar 

  151. C.T.C. Wall, Geometric properties of generic differentiable manifolds, in:Geometry and Topology, III Latin American School of Mathematics, J. Palis and M. da Carmo, eds., Lecture Notes in Mathematics 597 (Springer, 1977) pp. 707–774.

  152. W. Wetterling, Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben, Numerische Mathematik 15 (1970) 122–136.

    Google Scholar 

  153. Y. Yomdin, On the local structure of a generic central set, Compositio Math. 43 (1981) 225–238.

    Google Scholar 

  154. Y. Yomdin, On functions representable as a supremum of a family of smooth functions, SIAM J. Math. Anal. 14 (1983) 239–246.

    Google Scholar 

  155. Y. Yomdin, Some results on finite determinacy and stability not requiring the explicit use of smoothness, Proc. Symp. Pure Math. 40, Part 2 (1983) 667–674.

    Google Scholar 

  156. Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983) 495–515.

    Google Scholar 

  157. Y. Yomdin, The set of zeroes of an “almost polynomial” function, Proc. Am. Math. Soc. 90 (1984) 538–542.

    Google Scholar 

  158. Y. Yomdin, Maxima of smooth families III: Morse-Sard theorem, Preprint, Max-Planck-Institut für Mathematik, Bonn, West Germany (1984).

    Google Scholar 

  159. Y. Yomdin, On representability of convex functions as maxima of linear families, Preprint, Max-Planck-Institut für Mathematik, Bonn, West Germany (1984).

    Google Scholar 

  160. Y. Yomdin, Global bounds for the Betti numbers of regular fibers of differentiable mappings, Topology 24 (1985) 145–152.

    Google Scholar 

  161. Y. Yomdin, On functions representable as a supremum of a family of smooth functions II, SIAM J. Math. Anal. 17 (1986) 961–969.

    Google Scholar 

  162. Y. Yomdin, Approximational complexity of functions, in:Geometric Aspects of Functional Analysis, J. Lindenstrauss and V.D. Milman, eds., Lecture Notes in Mathematics 1317 (Springer, 1988) pp. 21–43.

  163. Y. Yomdin, Metric semialgebraic geometry with applications in smooth analysis, Preprint (1988).

  164. Y. Yomdin, Sard's theorem and its improved versions in numerical analysis, Preprint, Institute for Advanced Study, Princeton, New Jersey (1988).

    Google Scholar 

  165. J. Zowe, Nondifferentiable optimization — a motivation and a short introduction into the subgradient — and the bundle concept, in:Computational Mathematical Programming, K. Schittkowski, ed. (Springer, 1985) pp. 321–356.

  166. J. Zowe, Optimization with nonsmooth data, OR Spektrum 9 (1987) 195–201.

    Google Scholar 

  167. G. Zwier, Structural analysis in semi-infinite programming, Dissertation, Twente University, The Netherlands (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongen, H.T., Weber, G.W. On parametric nonlinear programming. Ann Oper Res 27, 253–283 (1990). https://doi.org/10.1007/BF02055198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055198

Keywords

Navigation