Skip to main content
Log in

Comparing Regularized and Non-Regularized Nonlinear Dipole Fit Methods: A Study in a Simulated Sulcus Structure

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The inverse problem arising from EEG and MEG is largely underdetermined. One strategy to alleviate this problem is the restriction to a limited number of point-like sources, the focal source model. Although the singular value decomposition of the spatio-temporal data gives an estimate of the minimal number of dipoles contributing to the measurement, the exact number is unknown in advance and noise complicates the reconstruction. Classical non-regularized nonlinear dipole fit algorithms do not give an estimate for the correct number because they are not stable with regard to an overestimation of this parameter. Too many sources may only describe noise but can still attain a large magnitude during the inverse procedure and may be indiscernible from the true sources. This paper describes a nonlinear dipole fit reconstruction algorithm with a new regularization approach for the embedded linear problem, automatically controlled by the noise in the data and the condition of the occuring least square problems. The algorithm is stable with regard to source components which “nearly” lie in the kernel of the projection or lead field operator and it thus gives an estimate of the unknown number parameter. EEG simulation studies in a simulated sulcus structure are carried out for an instantaneous dipole model and spatial resolution in the sulcus and stability of the new method are compared with a classical reconstruction algorithm without regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann, R., Buchner, H. and Knoll, G. Inverse localization of neuronal activity on opposite walls of a simulated sulcus. In: H. Witte, U. Zwiener, B. Schack and A. Doering (Eds.), Quantitative and Topological EEG and MEG Analysis, Druckhaus Mayer Verlag GmbH Jena-Erlangen, 1997: 484-486.

    Google Scholar 

  • Bertrand, O., Thévenet, M. and Perrin, F. 3D finite element method in brain electrical activity studies. In: J. Nenonen, H.M. Rajala and T. Katila (Eds.), Biomagnetic Localization and 3D Modelling, Report Department of Technical Physics, Helsinki University, 1991: 154-171.

  • Buchner, H., Knoll, G., Fuchs, M., Rienäcker, A., Beckmann, R., Wagner, M., Silny, J. and Pesch, J. Inverse localization of electric dipole current sources in finite element models of the human head. Electroencephalogr. and Clin. Neurophysiol., 1997, 102: 267-278.

    Google Scholar 

  • Fuchs, M., Wagner, M., Wischmann, H.A., Köhler, T., Theißen, A., Drenckhahn, R. and Buchner, H. Improving source reconstructions by combining bioelectric and biomagnetic data, Electroencephalogr. and Clin. Neurophysiol., 1998, 107: 93-111.

    Google Scholar 

  • Geman, S. and Geman, D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6: 721-741.

    Google Scholar 

  • Gerson, J., Cardenas, V.A. and Fein, G. Equivalent dipole parameter estimation using simulated annealing. Electroencephalogr. and Clin. Neurophysiol., 1994, 92: 161-168.

    Google Scholar 

  • Hämäläinen, M.S. and Ilmoniemi, R.J. Interpreting magnetic fields of the brain: minimum norm estimates, Med. Biol. Eng. Comp., 1994, 32: 35-42.

    Google Scholar 

  • Hämmerlin, G. and Hoffmann, K.-H. Numerische Mathematik. Springer-Verlag, 2 edition, 1991.

  • Haneishi, H., Ohyama, N., Sekihara, K. and Honda, T. Multiple current dipole estimation using simulated annealing, IEEE Transactions on Biomedical Engineering, 1994, 41: 1004-1009.

    Google Scholar 

  • Haueisen, J., Ramon, C., Czapski, P. and Eiselt, M. On the influence of volume currents and extended sources on neuromagnetic fields: A simulation study. Annals of Biomedical Engineering, 1995, 23: 728-739.

    Google Scholar 

  • Knösche, T.R., Berends, E.M., Jagers, H.R.A. and Peters, M.J. Determining the number of independent sources of the EEG. A simulation study on information criteria. Brain Topography, 1998, 11(2): 111-124.

    Google Scholar 

  • LAPACK, Linear Algebra PACKage User's Guide, SIAM, 1992.

  • Lorente de No, R. Cerebral cortex: architecture, intracortical connections, motor projections, In: J.F. Fulton, (Ed.), Physiology of the Nervous System, Ch.15. University Press, Oxford, London, 1938.

    Google Scholar 

  • Louis, A.K. Inverse und schlecht gestellte Probleme. Teubner-Verlag, 1989.

  • Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier G. Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using the FEM on realistic head models, Human Brain Mapping, 1998, 6: 250-269.

    Google Scholar 

  • Menon, V., Ford, J.M., Lim, K.O., Glover, G.H. and Pfefferbaum, A. Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection, Neuroreport, 1997, 8: 3029-3037.

    Google Scholar 

  • Miller, K. Least squares methods for ill-posed problems with a prescribed bound. SIAM Journal of Math. Analysis, 1979, 1: 52-74.

    Google Scholar 

  • Mosher, J.C., Lewis, P.S. and Leahy, R.M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering, 1992, 39(6): 541-557.

    Google Scholar 

  • Nelder, J.A. and Mead, R. A simplex method for function minimization. Comp. J., 1965, 7: 308-313.

    Google Scholar 

  • Nunez, P.L. Localization of brain activity with electroencephalography. In: S. Sato (Ed.), Magnetoencephalography, Raven Press, New York, 1990: 39-65.

    Google Scholar 

  • Opitz, B., Mecklinger, A., von Cramon, D.Y. and Kruggel, F. Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 1999, 36: 142-147.

    Google Scholar 

  • Plonsey, R. and Heppner, D. Considerations on quasi-stationarity in electrophysiological systems. Bull. math. Biophys., 1967, 29: 657-664.

    Google Scholar 

  • Pohlmeier, R., Buchner, H. and Knoll, G. The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topography, 1997, 9(3): 157-162.

    Google Scholar 

  • Rienäcker, A., Buchner, H. and Knoll, G. Comparison of regularized inverse EEG analyses in finite element models of the individual anatomy. In: H. Witte, U. Zwiener, B. Schack and A. Doering (Eds.), Quantitative and Topological EEG and MEG Analysis, Druckhaus Mayer Verlag GmbH Jena-Erlangen, 1997: 459-463.

    Google Scholar 

  • Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. and Clin. Neurophysiol., 1985, 62: 32-44.

    Google Scholar 

  • Vainikko, G.M. The discrepancy principle for a class of regularization methods. USSR Computational Mathematics and Mathematical Physics, 1982, 22(3): 1-19.

    Google Scholar 

  • Vainikko, G.M. The critical level of discrepancy in regularization methods. USSR Computational Mathematics and Mathematical Physics, 1983, 23(6): 1-9.

    Google Scholar 

  • van den Broek, S.P., Zhou, H. and Peters, M.J. Computation of neuromagnetic fields using finite element method and biot savart law. Med. Biol. Eng. Comput., 1996, 34: 21-26.

    Google Scholar 

  • Vaughan, H.G. Jr., The analysis of scalp-recorded brain potentials. In: R.F. Thompson and M.M. Patterson (Eds.), Bioelectric Recording Techniques. Part B. Academic Press, New York, 1974, 158-207.

    Google Scholar 

  • Wagner, M., Fuchs, M., Wischmann, H.-A., Drenckhahn, R. and Köhler, Th. Current density reconstructions using the L1-norm. In: Biomag96, Proc. of the 10th Int. Conf. of Biomagnetism; Santa Fe, 1996: 158-207.

  • Wang, J.-Z. MNLS inverse discriminates between neuronal activity on opposite walls of a simulated sulcus of the brain. IEEE Transactions on Biomedical Engineering, 1994, 41(5): 470-479.

    Google Scholar 

  • Werner, J. Numerische Mathematik 1. Vieweg, 1991.

  • Wolters, C. Direkte Methoden zur Berechnung dipolinduzierter elektrischer und magnetischer Felder und inverse Strategien zur Quellokalisation im Gehirn. Diplomarbeit in Mathematik mit Nebenfach Medizin, Institut fur Geometrie und Praktische Mathematik, RWTH Aachen, 1997.

    Google Scholar 

  • Wolters, C., Rienäcker, A., Beckmann, R., Jarausch, H., Buchner, H., Grebe, R. and Louis, A.K. Stable inverse current reconstruction in real anatomy using combinatorial optimization techniques combined with regularization methods. In: H. Witte, U. Zwiener, B. Schack and A. Doering (Eds.), Quantitative and Topological EEG and MEG Analysis, Druckhaus Mayer Verlag GmbH Jena-Erlangen, 1997: 487-490.

    Google Scholar 

  • Wood, C.C. Application of dipole localization methods to source identification of human evoked potentials. Ann. New York Acad. Sci., 1982, 388: 139-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters, C., Beckmann, R., Rienäcker, A. et al. Comparing Regularized and Non-Regularized Nonlinear Dipole Fit Methods: A Study in a Simulated Sulcus Structure. Brain Topogr 12, 3–18 (1999). https://doi.org/10.1023/A:1022281005608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022281005608

Navigation