Skip to main content
Log in

Inhibition of NF-κB Activity Enhances TRAIL Mediated Apoptosis in Breast Cancer Cell Lines

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Most breast cancer cell lines are resistant to TNF-related apoptosis inducing ligand (TRAIL) induced apoptosis. In sensitive breast cancer cell lines TRAIL rapidly induces the cleavage and activation of caspases leading to the subsequent cleavage of downstream caspase substrates. In contrast, there is no caspase activation in the resistant cell lines. The transcription factor NF-κB can inhibit apoptosis induced by a variety of stimuli including activation of death receptors. We investigated whether NF-κB contributes to the resistance of breast cancer cells to TRAIL induced apoptosis. All of the resistant breast cancer cell lines expressed NF-κB and had detectable NF-κB activity in nuclear extracts prior to treatment with TRAIL. Upon TRAIL treatment, a significant increase in NF-κB activity was seen in most of the cell lines. To directly test if NF-κB activity contributes to the resistance of these cell lines to TRAIL, we transiently transfected the resistant cell lines with an inhibitor of NF-κB (IκBΔN) and measured TRAIL induced apoptosis in control and transfected cells. All of the resistant cell lines tested showed an increase in TRAIL induced apoptosis when transfected with the IκBΔN. These results demonstrate that TRAIL resistant breast cancer cells fail to rapidly activate the apoptotic machinery but they do activate NF-κB. Inhibition of NF-κB activity increases the sensitivity to TRAIL mediated apoptosis in resistant cells. These results suggest that agents which inhibit NF-κB should increase the clinical efficacy of TRAIL in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM: Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11: 255–260, 1999

    PubMed  Google Scholar 

  2. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 281: 1305–1308, 1998

    Article  PubMed  Google Scholar 

  3. Smith CA, Farrah T, Goodwin RG: The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962, 1994

    PubMed  Google Scholar 

  4. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S: Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809, 1993

    PubMed  Google Scholar 

  5. Griffith TS, Lynch DH: TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 10: 559–563, 1998

    PubMed  Google Scholar 

  6. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG: Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682, 1995

    PubMed  Google Scholar 

  7. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821, 1997

    PubMed  Google Scholar 

  8. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM: An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815–818, 1997

    PubMed  Google Scholar 

  9. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM: The receptor for the cytotoxic ligand TRAIL. Science 276: 111–113, 1997

    PubMed  Google Scholar 

  10. Jeremias I, Herr I, Boehler T, Debatin KM: TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 28: 143–152, 1998

    PubMed  Google Scholar 

  11. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH: Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat Med 5: 157–163, 1999

    PubMed  Google Scholar 

  12. Roth W, Isenmann S, Naumann U, Kugler S, Bahr M, Dichgans J, Ashkenazi A, Weller M: Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 265: 479–483, 1999

    PubMed  Google Scholar 

  13. Gliniak B, Le T: Tumor-necrosis factor-related apoptosisinducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59: 6153–6158, 1999

    PubMed  Google Scholar 

  14. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH: Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104: 155–162, 1999

    PubMed  Google Scholar 

  15. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S: Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59: 734–741, 1999

    PubMed  Google Scholar 

  16. Snell V, Clodi K, Zhao S, Goodwin R, Thomas EK, Morris SW, Kadin ME, Cabanillas F, Andreeff M, Younes A: Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol 99: 618–624, 1997

    PubMed  Google Scholar 

  17. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y: Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics (review). Int J Oncol 15: 793–802, 1999

    PubMed  Google Scholar 

  18. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P: Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAILinduced apoptosis of melanoma. Cancer Res 59: 2747–2753, 1999

    PubMed  Google Scholar 

  19. Bretz JD, Rymaszewski M, Arscott PL, Myc A, Ain KB, Thompson NW, Baker JR, Jr: TRAIL death pathway expression and induction in thyroid follicular cells. J Biol Chem 274: 23627–23632, 1999

    PubMed  Google Scholar 

  20. Mizutani Y, Yoshida O, Miki T, Bonavida B: Synergistic cytotoxicity and apoptosis by Apo-2 ligand and adriamycin against bladder cancer cells. Clin Cancer Res 5: 2605–2612, 1999

    PubMed  Google Scholar 

  21. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ: Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161: 2833–2840, 1998

    PubMed  Google Scholar 

  22. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG: The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7: 813–820, 1997

    PubMed  Google Scholar 

  23. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L: Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7: 821–830, 1997

    PubMed  Google Scholar 

  24. Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N, Tschopp J: TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7: 831–836, 1997

    PubMed  Google Scholar 

  25. Beg, AA, Baltimore D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274: 782- 784, 1996

    Google Scholar 

  26. Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell 87: 13–20, 1996

    PubMed  Google Scholar 

  27. Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, Baldwin AS, Jr: Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278: 1812–1815, 1997.

    PubMed  Google Scholar 

  28. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr: NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683, 1998

    Article  PubMed  Google Scholar 

  29. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM: Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274: 787–789, 1996

    PubMed  Google Scholar 

  30. Soule HD, Maloney TM, Wolman SR, Peterson WJ, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10, Cancer Res 50: 6075–6086, 1990

    PubMed  Google Scholar 

  31. Memon SA, Petrak D, Moreno MB, Zacharchuk CM: A simple assay for examining the effect of transiently expressed genes on programmed cell death. J Immunol Methods 180: 15–24, 1995

    PubMed  Google Scholar 

  32. Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW: Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 15: 2809–2818, 1995

    PubMed  Google Scholar 

  33. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371: 346–347, 1994

    PubMed  Google Scholar 

  34. Lin Y, Devin A, Rodriguez Y, Liu ZG: Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13: 2514–2526, 1999

    PubMed  Google Scholar 

  35. Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O'Brien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR: The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15: 2407–2416, 1996

    PubMed  Google Scholar 

  36. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ: Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 144: 281–292, 1999

    PubMed  Google Scholar 

  37. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Jr, Sledge GW, Jr: Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17: 3629–3639, 1997

    PubMed  Google Scholar 

  38. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE: Aberrant nuclear factorkappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100: 2952–2960, 1997

    PubMed  Google Scholar 

  39. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM: Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 91: 4624–4631, 1998

    PubMed  Google Scholar 

  40. Jeremias I, Debatin KM: TRAIL induces apoptosis and activation of NF-kappaB. Eur Cytokine Netw 9: 687–678, 1998

    PubMed  Google Scholar 

  41. Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH, Smith CA, Goodwin RG, Kubin, MZ: Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 162: 2597–2605, 1999.

    PubMed  Google Scholar 

  42. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J: Inhibition of death receptor signals by cellular FLIP. Nature 388: 190–195, 1997

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keane, M.M., Rubinstein, Y., Cuello, M. et al. Inhibition of NF-κB Activity Enhances TRAIL Mediated Apoptosis in Breast Cancer Cell Lines. Breast Cancer Res Treat 64, 211–219 (2000). https://doi.org/10.1023/A:1006458407515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006458407515

Navigation