Skip to main content
Log in

Laser Raman spectroscopy (LRS) and time differential perturbed angular correlation (TDPAC) study of surface species on Mo/SiO2 and Mo,Na/SiO2. Their role in the partial oxidation of methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Silica-supported molybdenum (1.6 and 5.0 wt%) and molybdenum (5 wt%)-sodium (0.4 wt%) catalysts have been characterized by laser Raman spectroscopy (LRS), time differential perturbed angular correlation (TDPAC), temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The presence of different molybdenum species was correlated with activity and selectivity to formaldehyde during the methane partial oxidation reaction. The main species identified on the Mo(5.0 wt%) /SiO2 surface were MoO3 and monomeric species with a single Mo=O terminal bond. The pre-impregnation of the silica support with sodium strongly diminishes the Mo=O concentration due to the formation of Na2Mo2O7 species and tetrahedral monomers with a high degree of symmetry. As a result of these modifications, both methane conversion and formaldehyde formation are strongly inhibited. The combination of LRS and TDPAC techniques resulted in a powerful tool for the identification and quantification of the molybdenum species present on the surface of a silica support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bielanski and J. Haber, Catal. Rev. Sci. Eng. 19 (1979) 1.

    CAS  Google Scholar 

  2. M.M. Koranne, J.G. Goodwin Jr. and G. Marcelin, J. Catal. 148 (1994) 369.

    Article  CAS  Google Scholar 

  3. N.D. Spencer, J. Catal. 109 (1988) 187.

    Article  CAS  Google Scholar 

  4. N.D. Spencer, C.J. Pereira and R.K. Grasselli, J. Catal. 126 (1990) 546.

    Article  CAS  Google Scholar 

  5. M.A. Ba~nares, N.D. Spencer, M.D. Jones and I.E. Wachs, J. Catal. 146 (1994) 204.

    Article  CAS  Google Scholar 

  6. M.A. Bañares and J.L.G. Fierro, in: Catalytic Selective Oxidation, ACS Symposium Series 523, eds. S.T. Oyama and J.W. Hightower (Am. Chem. Soc., Washington DC, 1993) p. 354.

    Google Scholar 

  7. M.M. Koranne, J.G. Goodwin Jr. and G. Marcelin, J. Phys. Chem. 97 (1993) 673.

    Article  CAS  Google Scholar 

  8. B. Kartheuser and B.K. Hodnett, J. Chem. Soc. Chem. Commun. (1993) 1093.

  9. S. Irusta, A.J. Marchi, E.A. Lombardo and E.E. Miró, Catal. Lett. 40 (1996) 9.

    Article  CAS  Google Scholar 

  10. S. Irusta, L. Cornaglia, E.E. Miró and E.A. Lombardo, J. Catal. 156 (1995) 167.

    Article  Google Scholar 

  11. K. Suzuki, T. Hayakawa, M. Shimizu and K. Takehira, Catal. Lett. 30 (1995) 167.

    Article  Google Scholar 

  12. M. Smith and U. Ozkan, J. Catal. 142 (1993) 226.

    Article  CAS  Google Scholar 

  13. C.C. Willams, J.G. Ekerdt, J.M. Jengh, F.D. Hardcastle, A.M. Turek and I.E.Wachs, J. Phys.Chem. 95 (1991) 8781.

    Article  Google Scholar 

  14. D.S. Kim, K. Segawa, T. Soeya and I.E. Wachs, J. Catal. 136 (1992) 539.

    Article  CAS  Google Scholar 

  15. T. Butz, C. Vogdt, A. Lerf and H. Knözinger, J. Catal. 116 (1989) 31.

    Article  CAS  Google Scholar 

  16. H. Frauenfelder and R.M. Steffen, in: Alpha-, Beta-, Gamma-Ray-Spectroscopy, Vol. 2, ed. K. Siegbahn (North-Holland, Amsterdam, 1965) p. 917.

    Google Scholar 

  17. M. del Arco, S.R.G. Carrazán, C. Martín, V. Rives, J.V. García-Ramos and P.Carmona, Spectrochim. Acta 50A (1994) 2215.

    Article  Google Scholar 

  18. M.A.Vuurman and I.E. Wachs, J. Phys. Chem. 96 (1992) 5008.

    Article  Google Scholar 

  19. M. de Boer, A.J. van Dillen, D.C. Koningsberger, J.W. Geus, M.A.Vuurman and I.E.Wachs, Catal. Lett. 11 (1991) 227.

    Article  CAS  Google Scholar 

  20. N. Nakamoto, Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds (Wiley, NewYork, 1978).

    Google Scholar 

  21. I.E.Wachs, Catal. Today 27 (1996) 437.

    Google Scholar 

  22. V.H.J. Becker, Z. Anorg.Allg. Chem. 474 (1981) 63.

    Google Scholar 

  23. C.C. Williams, J.G. Ekerdt, J.-M. Jehng, F.D. Hardcastle and I.E.Wachs, J. Phys. Chem. 95 (1991) 8791.

    Article  CAS  Google Scholar 

  24. C. Vogdt, T. Butz, A. Lerf and H. Knözinger, J. Catal. 116 (1989) 31.

    Article  Google Scholar 

  25. F.G. Requejo, A.G. Bibiloni, H. Saitovitch and P.R.J. Silva, Phys. Stat. Sol. (a) 120 (1990) 105.

    CAS  Google Scholar 

  26. F.G.Requejo and A.G. Bibiloni, Langmuir 12 (1996) 51.

    Article  Google Scholar 

  27. A. Ralston and H.S. Wilf, eds., Mathematical Methods for Digital Computers (Wiley, NewYork, 1962) ch. 7.

    Google Scholar 

  28. F.A. Schröder, Acta Cryst. B 31 (1975) 2294.

    Article  Google Scholar 

  29. I.D. Brown and R.D. Shannon, Acta. Cryst. A 29 (1973) 266.

    Article  CAS  Google Scholar 

  30. E. Payen, J. Grimblot and J. Kasztelan, J. Phys. Chem. 91 (1987) 6642.

    Article  CAS  Google Scholar 

  31. Y. Okamoto and T. Imanaka, J. Phys. Chem. 92 (1988) 7102.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchi, A., Lede, E., Requejo, F. et al. Laser Raman spectroscopy (LRS) and time differential perturbed angular correlation (TDPAC) study of surface species on Mo/SiO2 and Mo,Na/SiO2. Their role in the partial oxidation of methane. Catalysis Letters 48, 47–54 (1997). https://doi.org/10.1023/A:1019062617604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019062617604

Keywords

Navigation