Skip to main content
Log in

The Involvement of p53 in Dopamine-Induced Apoptosis of Cerebellar Granule Neurons and Leukemic Cells Overexpressing p53

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The pathogenesis of the selective degeneration of the dopaminergic neurons in Parkinson's disease is still enigmatic. Recently we have shown that dopamine can induce apoptosis in postmitotic neuronal cells, as well as in other cellular systems, thus suggesting a role for this endogenous neurotransmitter and associated oxidative stress in the neuronal death process.

2. Dopamine has been shown to be capable of inducing DNA damage through its oxidative metabolites. p53 is a transcription factor that has a major role in determining cell fate in response to DNA damage. We therefore examined the possible correlation between dopamine-triggered apoptosis, DNA damage and levels of total phosphorylated p53 protein in cultured mouse cerebellar granule neurons.

3. Marked DNA damage and apoptotic nuclear condensation and fragmentation were detected within several hours of exposure to dopamine. An associated marked threefold increase in p53 phosphorylation was observed within this time window. Using a temperature-sensitive p53 activation system in leukemia LTR6 cells, were found that p53 inactivation dramatically attenuated dopamine toxicity.

4. We therefore conclude that DNA damage and p53 activation may have a role in mediating dopamine-induced apoptosis. Modulation of the p53 system may therefore have a protective role against the toxicity of this endogenous neurotransmitter and associated oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Amson, R. B., et al. (1996). Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: Activation of vertebrate homologues of the Drosophila seven in absentia gene. Proc. Natl. Acad. Sci. USA 93:3953–3957.

    Google Scholar 

  • Ausubel, F. M., Brent, R., Jingston, R. E., Moore, D. D., Seidman, J. D., Smith, J. A., and Strule, K. (1989). Curr. Prot. Mol. Biol. 1, 3.5.9(a) and 2.2.3 (b), Wiley Interscience, New York.

    Google Scholar 

  • Basnkian, A. G., and James, S. J. (1994). A rapid and sensitive assay for the detection of DNA fragmentation during early phase of apoptosis. Nucleic Acids Res. 22:2714–2715.

    Google Scholar 

  • Bates, S., and Vousden, K. H. (1996). p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6:12–18.

    Google Scholar 

  • Brugarolas, J., Chandrasekaran, C., Gordon, J. I., Beach, D., Jacks, T., and Hannon, G. J. (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557.

    Google Scholar 

  • Buckbinder, L., Talbott, R., Velasco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B. R., and Kley, N. (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649.

    Google Scholar 

  • Carle, G. F., Frank. M., and Olson, M. V. (1986). Electrophoretic separation of large DNA molecules by periodic inversion of the electric field. Science 232:65–69.

    Google Scholar 

  • Deng, C. X., Zhang, P. M., Harper, J. W., Elledge, S. J., and Leder, P. (1995). Mice lacking p21 (C/P/WAF1) undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.

    Google Scholar 

  • D'Mello, S. R., Galli, C., Ciotti, T., and Calissano, P. (1993). Induction of apoptosis in cerebellar granule neurons by low potassium: Inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. USA 90:10989–10993.

    Google Scholar 

  • Friedlander, P., Haupt, Y., Prives, C., and Oren, M. (1996). A mutant p53 that discriminates between p53-responsive gene cannot induce apoptosis. Mol. Cell. Biol. 16:4961–4971.

    Google Scholar 

  • Gottlieb, T. M., and Oren, M. (1996). p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102.

    Google Scholar 

  • Johnson, N. F., Carpenter, T. R., Jaramillo, R. J., and Liberati, T. A. (1997). DNA damage-inducible genes as biomarkers for exposure to environmental agents. Environ. Health Perspect. 105(Suppl. 4):913–918.

    Google Scholar 

  • Jordan, J., Galindo, M. F., Prehn, J. H., Weichselbaum, R. R., Beckett, M., Chadge, G. D., Roose, R. P., Leiden, J. M., and Miller, R. J. (1997). p53 expression induced apoptosis in hippocampal pyramidal neuron cultures. J. Neurosci. 17(4):1397–1405.

    Google Scholar 

  • Kitamura, Y., Shimohama, S., Kamoshima, W., Matsuoka, Y., Nomura, Y., and Taniguchi, T. (1997). Changes of p53 in the brains of patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 232:418–421.

    Google Scholar 

  • Ko, L. J., and Prives, C. (1996). p53: Puzzle and paradigm. Genes Dev. 10:1054–1072.

    Google Scholar 

  • Lasher, R. S., and Zagon, I. S. (1972). The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res. 41:482–488.

    Google Scholar 

  • Lohrum, M., and Scheidtman, K. H. (1996). Differential effects of phosphorylation of rat p53 on transactivation of promoters derived from different p53 responsive genes. Oncogene 13:2527–2539.

    Google Scholar 

  • Ludwig, R. L., Bates, S., and Vousden, K. H. (1996). Differential activation of target cellular promoter by p53 mutant with impaired apoptosic function. Mol. Cell. Biol. 16:4952–4960.

    Google Scholar 

  • Miyashita, T., and Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.

    Google Scholar 

  • Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B., and Reed, J. C. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805.

    Google Scholar 

  • Moldeus, P., Nordenskjold, M., Bolcsfoldi, G., Aiche, A., Haglund, U., and Lambert, B. (1983). Genetic toxicity of dopamine. Mutat. Res. 124:9–23.

    Google Scholar 

  • Nardi, N., Avidan, G., Daily, D., Zilka-Falb, R., and Barzilai, A. (1997). Biochemical and temporal analysis of events associated with apoptosis induced by lowering the extracellular potassium concentration in mouse cerebellar granule neurons. J. Neurochem. 68:750–759.

    Google Scholar 

  • Nemani, M., et al. (1996). Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc. Natl. Acad. Sci. USA 93:9039–9042.

    Google Scholar 

  • Offen, D., Sternin, H., Ziv, I., Melamed, E., and Hochman, A. (1996). Prevention of dopamine-induced apoptosis by antioxidants: Possible implication for treatment of Parkinson's disease. Exp. Neurol. 141:32–39.

    Google Scholar 

  • Oren, M., and Prives, C. (1996). p53: Upstream, downstream and off stream. Biochim. Biophys. Acta 1288:R13-R19.

    Google Scholar 

  • Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389:300–305.

    Google Scholar 

  • Selvakumaran, M., Lin, H. K., Miyashita, T., Wang, H. G., Krajewski, S., Reed, J. C., Hoffman, B., and Liebermann, D. A. (1994). Immediate early up-regulation of bax expression by p53 but not TGF-beta1: A paradigm for distinct apoptotic pathways. Oncogene 9:1791–1798.

    Google Scholar 

  • Sugrue, M. M., Shin, D. Y., Lee, S. W., and Aaronson, S. A. (1997). Wild type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci.USA 94:9648–9653.

    Google Scholar 

  • Trimmer, P. A., Smith, T. S., Jung, A. B., and Bennett, J. P., Jr. (1996). Dopamine neurons from transgenic mice with knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 5:233–239.

    Google Scholar 

  • Waldman, T., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381:713–716.

    Google Scholar 

  • Wick, M. M. (1989). Levodopa/dopamine analogs as inhibitors of DNA synthesis in human melanoma cells. J. Invest. Dermatol. 92:329S-331S.

    Google Scholar 

  • Wood, K. A., and Youle, R. J. (1995). The role of free radicals and p53 in neuron apoptosis in vivo. J. Neurosci. 15:5851–5857.

    Google Scholar 

  • Wu, L., and Levine, A. J. (1997). Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol. Med. 3:441–451.

    Google Scholar 

  • Yarnold, J. (1997). Molecular aspect to cellular responses to radiotherapy. Radiother. Oncol. 44:1–7.

    Google Scholar 

  • Yonish-Rouach, E., Resnitzky, D., Lotem, L., Sacks, L., Kimchi, A., and Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347.

    Google Scholar 

  • Yonich-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J., May, P., and Oren, M. (1993). P53-mediated cell death: Relationship to cell cycle control. Mol. Cell. Biol. 13:1415–1423.

    Google Scholar 

  • Zilkha-Falb, R., Ziv, I., Nardi, N., Offen, D., Melamed, E., and Barzilai, A. (1997). Monoamine-induced apoptotic neuronal cell death. Cell. Mol. Neurobiol. 17(1):101–118.

    Google Scholar 

  • Ziv, I., Melamed, E., Nardi, N., Luria, D., Achiron, A., Offen, D., and Barzilai, A. (1994). Dopamine induces apoptosis like cell death in cultured chick embryo sympathetic neurons—A possible novel pathogenic mechanism in Parkinson's disease. Neurosci. Lett. 170:136–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daily, D., Barzilai, A., Offen, D. et al. The Involvement of p53 in Dopamine-Induced Apoptosis of Cerebellar Granule Neurons and Leukemic Cells Overexpressing p53. Cell Mol Neurobiol 19, 261–276 (1999). https://doi.org/10.1023/A:1006933312401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006933312401

Navigation