Skip to main content
Log in

Release of norepinephrine from brain vesicular preparations: Effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The calcium-dependent K+-evoked release of [3H]norepinephrine from guinea pig cerebral cortical vesicular preparations is inhibited by norepinephrine, clonidine, and epinephrine. Isoproterenol has no effect and phentolamine prevents the inhibition by norepinephrine. The results indicate that anα-adrenergic receptor mediates an inhibitory input to the calcium-dependent release process. The inhibition by norepinephrine is prevented by high concentrations (3.0 mM) of calcium ions.

  2. 2.

    A cyclic AMP phosphodiesterase inhibitor, ZK 62771, slightly elevates [3H]cyclic AMP levels in the guinea pig cerebral cortical preparation and potentiates the marked elevation of [3H]cyclic AMP elicited by the adenylate cyclase activator, forskolin.

  3. 3.

    Neither ZK 62771 nor forskolin alone has significant effects on K+-evoked release of [3H]norepinephrine from the cerebral cortical vesicular preparation; however, a combination of ZK 62771 and forskolin inhibits K+-evoked release by as much as 60%. The inhibition is reversed by high concentrations (2.0 mM) of calcium ions. The results suggest that a marked accumulation of cyclic AMP elicited via both activation of adenylate cyclase and inhibition of phosphodiesterase can be inhibitory to neurotransmitter release from central synaptic terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler-Graschinsky, E., and Langer, S. Z. (1975). Possible role of a beta-adrenoreceptor in the regulation of noradrenaline release by nerve stimulation through a positive feed-back mechanism.Br. J. Pharmacol. 5343–50.

    Google Scholar 

  • Catterall, A. W. (1977). Activation of the action potential Na+ ionophore by neurotoxins.J. Biol. Chem. 2528669–8676.

    Google Scholar 

  • Chasin, M., Mamrak, F., and Samaniego, S. G. (1974). Preparation and properties of a cell-hormonally responsive adenylate cyclase from guinea pig brain.J. Neurochem. 221031–1038.

    Google Scholar 

  • Creveling, C. R., McNeal, E. T., McCulloh, D. H., and Daly, J. W. (1980). Membrane potentials in cell-free preparations from guinea pig cerebral cortex: Effect of depolarizing agents and cyclic nucleotides.J. Neurochem. 35922–932.

    Google Scholar 

  • Daly, J. W. (1977).Cyclic Nucleotides in the Nervous System, Plenum Press, New York.

    Google Scholar 

  • Daly, J. W., McNeal, E., Partington, C., Neuwirth, M., and Creveling, C. R. (1980). Accumulations of cyclic AMP in adenine-labelled cell-free preparations from guinea pig cerebral cortex: Role ofα-adrenergic and H1-histaminergic receptors.J. Neurochem. 35326–337.

    Google Scholar 

  • Daly, J. W., Padgett, W., and Seamon, K. (1982). Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin; Augmentation of receptor-mediated responses.J. Neurochem. 38532–544.

    Google Scholar 

  • De Langen, C. D. J., and Mulder, A. H. (1980). On the role of calcium ions in the presynaptic alpha-receptor mediated inhibition of [3H]noradrenaline release from rat brain cortex synaptosomes.Brain Res. 185389–408.

    Google Scholar 

  • De Langen, C. D. J., Hogenboom, F., and Mulder, A. H. (1979). Presynaptic noradrenergicα-receptors and modulation of3H-noradrenaline release from rat brain synaptosomes.Eur. J. Pharmacol. 6079–89.

    Google Scholar 

  • De Potter, W. P., Chubb, W., Put, A., and De Schaepdryver, A. F. (1971). Facilitation of the release of noradrenaline and dopamine-beta-hydroxylase at low stimulation frequencies by alpha-blocking agents.Arch. Int. Pharmacodyn. Ther. 193191–197.

    Google Scholar 

  • Dismukes, R. K., and Mulder, A. H. (1976). Cyclic AMP andα-receptor-mediated modulation of noradrenaline release from rat brain slices.Eur. J. Pharmacol. 39383–388.

    Google Scholar 

  • Ebstein, R. P., Reches, A., and Belmaker, R. H. (1978). Lithium inhibition of the adenosine-induced increase of adenylate cyclase activity.J. Pharm. Pharmacol. 30122–123.

    Google Scholar 

  • Jacobs, K. H., Saur, W., and Schultz, G. (1976). Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine.J. Cyclic Nucleotide Res. 2381–392.

    Google Scholar 

  • Klein, M., and Kandel, E. R. (1980). Mechanisms of calcium current modulation underlying presynaptic facilitation and behavioral sensitization inAplysia.Proc. Natl. Acad. Sci. USA 776912–6916.

    Google Scholar 

  • Langer, S. Z. (1973). The regulation of transmitter release elicited by nerve stimulation through a presynaptic feedback mechanism. InFrontiers in Catecholamine Research (Usdin, E., and Snyder, S. H., Eds.), Pergamon Press, New York, pp. 543–549.

    Google Scholar 

  • Langer, S. Z. (1979). Physiological and pharmacological role of presynaptic receptor systems in neurotrans-mission. InAdvances in the Biosciences, Vol. 18 (Langer, S. Z., Starke, K., and Dubrocovich, M. L., Eds.), Pergamon Press, New York, pp. 13–22.

    Google Scholar 

  • Maguire, M. E., Ross, E. M., and Gilman, A. G. (1977). Beta-adrenergic receptor: Ligand binding properties and the interaction with adenyl cyclase. InAdvances in Cyclic Nucleotide Research, Vol. 8 (Greengard, P., and Robison, G. A., Eds.), Raven Press, New York, pp. 1–83.

    Google Scholar 

  • Mah, H. D., and Daly, J. W. (1976). Adenosine-dependent formation of cyclic AMP in brain slices.Pharmacol. Res. Commun. 865–79.

    Google Scholar 

  • McNeal, E. T., Creveling, C. R., and Daly, J. W. (1980). Cyclic AMP-generating systems in cell-free preparations from guinea pig cerebral cortex: Loss of adenosine and amine responsiveness due to low levels of endogenous adenosine.J. Neurochem. 35338–342.

    Google Scholar 

  • Mulder, A. H., De Langen, C. D. J., de Regt, V., and Hogenboom, F. (1978). Alpha-receptor-mediated modulation of3H-noradrenaline release from rat brain cortex synaptosomes.Naunyn-Schmiedeberg Arch. Pharmacol. 303193–196.

    Google Scholar 

  • Sabol, S. L., and Nirenberg, M. (1979). Regulation of adenylate cyclase of neuroblastoma × glioma hybrid cells byα-adrenergic receptors. I. Inhibition of adenylate cyclase mediated byα receptors.J. Biol. Chem. 2541913–1920.

    Google Scholar 

  • Salomon, Y., Londos, C., and Rodbell, M. (1974). A highly sensitive adenylate cyclase assay.Anal. Biochem. 58541–548.

    Google Scholar 

  • Schwabe, U., Miyake, M., Ohga, Y., and Daly, J.W. (1976). 4-(3-Cyclopentyloxy-4-methoxy-phenyl)-2-pyrrolidone (ZK 62711): A potent inhibitor of cyclic AMP-phosphodiesterases in homogenates and tissue slices from rat brain.Mol. Pharmacol. 12900–910.

    Google Scholar 

  • Seamon, K., and Daly, J. W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein.J. Biol. Chem. 2569799–9801.

    Google Scholar 

  • Seamon, K. B., Padgett, W., and Daly, J. W. (1981). Forskolin: A unique diterpene activator of adenylate cyclase in membranes and intact cells.Proc. Natl. Acad. Sci. USA 783363–3367.

    Google Scholar 

  • Shimizu, H., Ichishita, H., and Miaokami, Y. (1975). Stimulation of the cell-free adenylate cyclase from guinea pig cerebral cortex by acidic amino acids and veratridine.J. Cyclic Nucleotide Res. 161–67.

    Google Scholar 

  • Siegl, A. M., Daly, J. W., and Smith, J. B. (1982). Inhibition of aggregation and stimulation of cyclic AMP generation in intact human platelets forskolin.Mol. Pharmacol. 21680–687.

    Google Scholar 

  • Starke, K. (1971). Influence of alpha-receptor stimulants on noradrenaline release.Naturwissenschafften 58420.

    Google Scholar 

  • Starke, K., and Montel, H. (1973). Alpha-receptor mediated modulation of transmitter release from central noradrenergic neurons.Naunyn-Schmiedeberg Arch. Pharmacol. 27953–60.

    Google Scholar 

  • Stjärne, L., and Brunden, J. (1976).β 2-Adrenoreceptors facilitating noradrenaline secretion from human vasocontrictor nerves.Acta Physiol. Scand. 9788–93.

    Google Scholar 

  • Stjärne, L., Bartfai, T., and Alberts, P. (1979). The influence of 8-Br 3′,5′-cyclic nucleotide analogs and of inhibitors of 3′,5′-cyclic nucleotide phosphodiesterase, on noradrenaline secretion and neuromuscular transmission in guinea pig vas deferens.Naunyn-Schmiedeberg Arch. Pharmacol. 30899–105.

    Google Scholar 

  • Walker, J. E., Goodman, P., Jacobs, D., and Lewin, E. (1978). Uptake and release of norepinephrine by slices of rat cerebral cortex: Effect of agents that increase cyclic AMP levels.Neurology 28900–904.

    Google Scholar 

  • Watanabe, A. M., Hathaway, D. R., Besch, H. R., Farmer, B. B., and Harris, R. A. (1977). Alpha-adrenergic reduction of cyclic adenosine monophosphate concentrations in rat myocardium.Circ. Res. 40596–602.

    Google Scholar 

  • Weiner, N. (1980). The role of cyclic nucleotides in the regulation of neurotransmitter release from adrenergic neurons by neuromodulators. InEssays in Neurochemistry and Neuropharmacology, Vol. 4 (Youdim, M. B. H., Lovenberg, W., Sharman, D. F., and Lagnado, J. R., Eds.), Wiley, New York, pp. 69–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebstein, R.P., Seamon, K., Creveling, C.R. et al. Release of norepinephrine from brain vesicular preparations: Effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor. Cell Mol Neurobiol 2, 179–192 (1982). https://doi.org/10.1007/BF00711146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711146

Key words

Navigation