Skip to main content
Log in

Involvement of Glial Endothelin/Nitric Oxide in Delayed Neuronal Death of Rat Hippocampus After Transient Forebrain Ischemia

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. We examined time- and cell-type-dependent changes in endothelin (ET)-1-like immunoreactivity, ET receptors binding and nitric oxide (NO) synthase (NOS) activity in CA1 subfields of the hippocampus of stroke-prone spontaneously hypertensive rats subjected to a 10-min bilateral carotid occlusion and reperfusion.

2. Microglia aggregated in accord with neuronal death and expressed a high density of ETB receptors and an intense NOS activity in the damaged CA1 pyramidal cell layer, 7 days after the induced transient forebrain ischemia. The increased NOS activity and ETB receptor in microglia disappeared 28 days after this transient ischemia.

3. In contrast to microglia, astrocytes presented a moderate level of ET-1-like immunoreactivity, ETB receptors, and NOS activity in all areas of the damaged CA1 subfields, 7 days after the ischemia. These events were further enhanced 28 days after the ischemia.

4. In light of these findings, the possibility that the microglial and the astrocytic ETB/NO system largely contributes to development of the neuronal death and to reconstitution of the damaged neuronal tissue, respectively, in the hippocampus subjected to a transient forebrain ischemia would have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. 87:1620–1624.

    PubMed  Google Scholar 

  • Boje, K. M., and Arora, P. K. (1992). Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587:250–256.

    PubMed  Google Scholar 

  • Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149:2736–2741.

    PubMed  Google Scholar 

  • Chi, O. Z., Wei, H. M., Sinha, A. K., and Weiss, H. R. (1994). Effects of inhibition of nitric oxide synthase on blood-brain barrier transport in focal cerebral ischemia. Pharmacology 48:367–373.

    PubMed  Google Scholar 

  • Davenport, A., Kue, R. E., Fitzgerald, F., Maguire, J. J., Berryman, K., and Doherty, A. M. (1994). [125I]-PD 151242 a selective radioligand for human ETA receptors. Br. J. Pharmacol. 111:4–6.

    PubMed  Google Scholar 

  • Endoh, M., Maiese, K., Pulsinelli, W. A., and Wagner, J. A. (1993). Reactive astrocytes express NADPH diaphorase in vivo after transient ischemia. Neurosci. Lett. 154:125–128.

    PubMed  Google Scholar 

  • Fuxe, K., Cintra, A., Andbjer, B., Änggård, E., Goldstein, M., and Agnati, L. F. (1989). Centrally administered endothelin-1 produces lesions in the brain of the male rats. Acta Physiol. Scand. 137:155–156.

    PubMed  Google Scholar 

  • Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K., and Masaki, T. (1989). The human endothelin family: Three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 86:2863–2867.

    PubMed  Google Scholar 

  • Israel, A., Correa, F. M. A., Niwa, M., and Saavedra, J. M. (1984). Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography. Brain Res. 322:341–345.

    PubMed  Google Scholar 

  • Kataoka, Y., Koizumi, S., Kumakura, K., Kurihara, M., Niwa, M., and Ueki, S. (1989). Endothelintriggared brain damage under hypoglycemia evidensed by real-time monitoring of dopamine release from rat striatal slices. Neurosci. Lett. 107:75–80.

    PubMed  Google Scholar 

  • Kataoka, Y., Koizumi, S., Niwa, M., Shibaguchi, H., Shigematu, K., Kudo, Y., and Taniyama, K. (1994). Endothelin-3 stimulates inositol 1,4,5-tris-phosphate production and Ca2+ influx to produce biphasic dopamine release from rat striatal slices. Cell. Mol. Neurobiol. 14:271–280.

    PubMed  Google Scholar 

  • Kataoka, Y., Koizumi, S., Kohzuma, M., Shibaguchi, H., Shigematu, K., Niwa, M., and Taniyama, K. (1995). NMDA receptor involvement in endothelin neurotoxicity in rat striatal slices. Eur. J. Pharmacol. 273:285–289.

    PubMed  Google Scholar 

  • Kataoka, Y., Koizumi, S., Ueki, S., and Niwa, M. (1991). Is an endothelin a neurotoxic factor in the brain? Neurochem. Int. 18:503–506.

    Google Scholar 

  • Kohzuma, M., Kataoka, Y., Koizumi, S., Shibaguchi, H., Nakashima, M. N., Yamashita, K., Niwa, M., and Taniyama, K. (1994). ETB receptor involvement in stimulatory and neurotoxic action of endothelin on dopamine neurones. Neuro Report 5:2653–2656.

    Google Scholar 

  • Koizumi, S., Kataoka, Y., Niwa, M., Yamashita, K., Taniyama, K., and Kudo, Y. (1994). Endothelin increased [Ca2+]i in cultured neurones and slices of rat hippocampus. Neuro Report 5:1077–1080.

    Google Scholar 

  • Kubes, P., and Granger, D. N. (1992). Nitric oxide modulates microvascular permeability. Am. J. Physiol. 262:H611-H615.

    PubMed  Google Scholar 

  • Lipton, S. A., Choi, Y., Pan, Z., Lei, S. Z., Chen, H. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestractive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    Article  PubMed  Google Scholar 

  • Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991). Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

    PubMed  Google Scholar 

  • Murphy, S., Simmons, M. L., Aggullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D., and Schwartz, J. P. (1993). Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16:323–328.

    Article  PubMed  Google Scholar 

  • Niwa, M., Kawaguchi, T., Himeno, A., Fujimoto, M., Kurihara, M., Yamashita, K., Kataoka, Y., Shigematsu, K., and Taniyama, K. (1992). Specific binding sites for 125I-endothelin-1 in the porcine and human spinal cord. Eur. J. Pharmacol. Mol. Pharmacol. 225:281–289.

    Google Scholar 

  • Palmer, R. M. J., Bridge, L., Foxwell, N. A., and Moncada, S. (1992). The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br. J. Pharmacol. 105:11–12.

    PubMed  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  Google Scholar 

  • Paxinos, G., and Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates, Academic Press, NewYork.

    Google Scholar 

  • Sato, T., Niwa, M., Himeno, A., Tsutsumi, K., and Amemia, T. (1993). Quantitative receptor autoradiographic analysis for angiotensin receptors in bovine retinal microvessels: Quantitation with radioluminography. Cell. Mol. Neurobiol. 13:233–245.

    PubMed  Google Scholar 

  • Scherer-Singler, U., Vincent, S. R., Kimura, H., and McGeer, E. G. (1983). Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J. Neurosci. Methods 9:229–234.

    PubMed  Google Scholar 

  • Tsukahara, H., Ende, H., Magazine, H. I., Bahou, W. F., and Goligorsky, M. S. (1994). Molecular and functional characterization of the non-isopeptide-selective ETB receptor in endothelial cells. J. Biol. Chem. 269:21778–21785.

    PubMed  Google Scholar 

  • Tsutsumi, K., Kitagawa, N., Niwa, M., Yamada, S., Khalid, H., Taniyama, K., Himeno, A., and Shibata, S. (1993). Biphasic effects of suramin on 125I-epidermal growth factor binding to human meningiomas. Cell. Mol. Neurobiol. 13:665–675.

    PubMed  Google Scholar 

  • Tsutsumi, K., Kitagawa, N., Niwa, M., Taniyama, K., Himeno, A., and Shibata, S. (1994). Effect of suramin on 125I-insulin-like groth factor-I binding to human meningiomas and on proliferation of meningioma cells. J. Neurosurg. 80:502–509.

    PubMed  Google Scholar 

  • Watakabe, T., Urade, Y., Takai, M., Umemura, I., and Okada, T. (1992). A reversible radiolidand specific for the ETB receptor: [125I]Tyr13-Suc-[Glu9,Ala11,15]-endothelin-1(8–21), [125I]IRL1620. Biochem. Biophys. Res. Commun. 185:867–873.

    PubMed  Google Scholar 

  • Wink, D. A., Hanbauer, I., Krishna, M. C., Gamson, J., and Mitchell, J. B. (1993). Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. USA 90:9813–9817.

    PubMed  Google Scholar 

  • Yamashita, K., Kataoka, Y., Niwa, M., Shigematsu, K., Himeno, A., Koizumi, S., and Taniyama, K. (1993). Increased production of endothelins in the hippocampus of stroke-prone spontaneously hypertensive rats following transient forebrain ischemia: Histochemical evidence. Cell. Mol. Neurobiol. 13:15–23.

    PubMed  Google Scholar 

  • Yamashita, K., Niwa, M., Kataoka, Y., Shigematsu, K., Himeno, A., Tsutsumi, K., Nakano-Nakashima, M., Sakurai-Yamashita, Y., Shibata, S., and Taniyama, K. (1994). Microglia with an endothelin ETB receptor aggregate in rat hippocampus CA1 subfields following transient forebrain ischemia. J. Neurochem. 63:1042–1051.

    PubMed  Google Scholar 

  • Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, K., Kataoka, Y., Sakurai-Yamashita, Y. et al. Involvement of Glial Endothelin/Nitric Oxide in Delayed Neuronal Death of Rat Hippocampus After Transient Forebrain Ischemia. Cell Mol Neurobiol 20, 541–551 (2000). https://doi.org/10.1023/A:1007007710703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007007710703

Navigation