Skip to main content
Log in

Red-Edge Excitation Study of Nonexponential Fluorescence Decay of Indole in Solution and in a Protein

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Proteins are known to be heterogeneous systems with a hierarchy of internal motions. However, those properties are often ignored when the complex fluorescence decay of tryptophan residues is compared to model studies with indole derivatives in solution. Here two simple models are presented, which illustrate different aspects of protein organization: (1) Trp zwitterion in buffer exemplifies ground-state heterogeneity and (2) indole in water/glycerol mixture exemplifies excited-state reconfiguration of solvate. Both systems are known to produce nonexponential fluorescence decay, attributed to the existence of multiple species (rotamers) or to the effects of slow dipolar relaxation, for (1) and (2), respectively. In the latter case a substantial dependence of decay on the excitation wavelength is expected. Indeed such dependence is observed for indole in water/glycerol mixture but not for Trp zwitterion in buffer. Therefore, excitational dependence can be used as a criterion to distinguish effects of multiple conformations in the ground state from effects of excited state reactions on tryptophan decays in proteins. The example of the bee venom peptide melittin indicates that both phenomena are important for interpretation of heterogeneity of decay, and therefore, caution should be exercised when assigning individual decay components to conformational subspecies in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Weber (1997) Methods Enzymol. 278, 13.

    Google Scholar 

  2. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987) Biophys. J. 51, 925–936.

    PubMed  Google Scholar 

  3. L. X.-Q. Chen, J. W. Longworth, and G. R. Fleming (1987) Biophys. J. 51, 865–873.

    PubMed  Google Scholar 

  4. C. M. Hutnik and A. G. Szabo (1989) Biochemistry 28, 3923–3934.

    PubMed  Google Scholar 

  5. Z. Bajzer and F. G. Prendergast (1993) Biophys. J. 65, 2313–2323.

    PubMed  Google Scholar 

  6. S.-J. Kim, F. N. Chowdhury, W. Stryjewski, E. S. Younathan, P. S. Russo, and M. D. Barkley (1993) Biophys. J. 65, 215–226.

    PubMed  Google Scholar 

  7. A. G. Szabo and D. M. Rayner (1980) J. Am. Chem. Soc. 102, 554–563.

    Google Scholar 

  8. W. R. Laws, J. B. A. Ross, H. R. Wyssbrod, J. R. Beechem, L. Brand, and J. C. Sutherland (1986) Biochemistry 25, 599–607.

    PubMed  Google Scholar 

  9. J. B. A. Ross, W. R. Laws, A. Buku, J. C. Sutherland, and H. R. Wyssbrod (1986) Biochemistry 25, 607–612.

    PubMed  Google Scholar 

  10. J. B. A. Ross, H. R. Wyssbrod, R. A. Porter, G. P. Schwartz, and W. R. Laws (1992) Biochemistry 31, 1585–1594.

    PubMed  Google Scholar 

  11. L. Tilstra, M. C. Sattler, W. R. Cherry, and M. D. Barkley (1990) J. Am. Chem. Soc. 112, 9176–9182.

    Google Scholar 

  12. W. J. Colucci, L. Tilstra, M. C. Sattler, F. R. Fronczek, and M. D. Barkley (1990) J. Am. Chem. Soc. 112, 9182–9190.

    Google Scholar 

  13. N. A. Nemkovich, A. N. Rubinov, and V. I. Tomin (1992) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy (Plenum Press, New York), Vol. 2, pp. 367–428.

    Google Scholar 

  14. Y. T. Mazurenko and N. G. Bakhshiev (1970) Opt. Spectrosk. 28(2), 905–913.

    Google Scholar 

  15. Y. T. Mazurenko (1972) Opt. Spectrosk. 33(1), 42–50.

    Google Scholar 

  16. R. P. DeToma and L. Brand (1977) Chem. Phys. Lett. 47, 231–236.

    Article  Google Scholar 

  17. J. R. Lakowicz and H. Cherek (1980) J. Biol. Chem. 255, 831–834.

    PubMed  Google Scholar 

  18. J. R. Lakowicz, H. Cherek, and D. R. Bevan (1980) J. Biol. Chem. 255, 4403–4406.

    PubMed  Google Scholar 

  19. J. R. Lakowicz and A. Balter (1982) Biophys. Chem. 15, 353–360.

    Article  PubMed  Google Scholar 

  20. J. R. Lakowicz and A. Balter (1982) Photochem. Photobiol. 36, 125–132.

    PubMed  Google Scholar 

  21. A. P. Demchenko and A. S. Ladokhin (1988) Eur. Biophys. J. 15, 369–379.

    Article  PubMed  Google Scholar 

  22. C. E. Dempsey (1990) Biochim. Biophys. Acta 1031, 143–161.

    PubMed  Google Scholar 

  23. L. R. Brown, J. Lauterwein, and K. Wuthrich (1980) Biochim. Biophys. Acta 622, 231–244.

    PubMed  Google Scholar 

  24. T. C. Terwilliger, L. Weissman, and D. Eisenberg (1982) Biophys. J. 37, 353–361.

    PubMed  Google Scholar 

  25. A. P. Demchenko and A. S. Ladokhin (1988) Biochim. Biophys. Acta 955, 352–360.

    PubMed  Google Scholar 

  26. A. P. Demchenko, A. S. Ladokhin, E. G. Kostrzhevskaya, and T. L. Dibrova (1987) Mol. Biol. 21, 553–560.

    Google Scholar 

  27. A. S. Ladokhin (1995) Biophys. J. 68, A192.

    Google Scholar 

  28. M. Badea and L. Brand (1979) Methods Enzymol. 61, 378–425.

    PubMed  Google Scholar 

  29. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus (1975) Biochemistry 14, 5355–5373.

    PubMed  Google Scholar 

  30. A. N. Rubinov and V. I. Tomin (1970) Opt. Spectrosk. 29(2), 1082–1085.

    Google Scholar 

  31. W. C. Galley and R. M. Purkey (1970) Proc. Natl. Acad. Sci. USA 67, 1116–1121.

    Google Scholar 

  32. K. I. Rudik and L. G. Pikulik (1971) Opt. Spectrosk. 30(2), 275–278.

    Google Scholar 

  33. N. A. Nemkovich, V. I. Matseyko, A. N. Rubinov, and V. I. Tomin (1979) Pis'ma Zh. Eksp. Teor. Fiz. 29(12), 780–783.

    Google Scholar 

  34. N. A. Nemkovich, V. I. Matseyko, and V. I. Tomin (1980) Opt. Spectrosk. 49(2), 274–283.

    Google Scholar 

  35. W. R. Laws and L. Brand (1979) J. Phys. Chem. 83, 795–802.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladokhin, A.S. Red-Edge Excitation Study of Nonexponential Fluorescence Decay of Indole in Solution and in a Protein. Journal of Fluorescence 9, 1–9 (1999). https://doi.org/10.1023/A:1020523404751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020523404751

Navigation