Skip to main content
Log in

Metallic mesh properties and design of submillimeter filters

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

By using a Michelson interferometer in the asymmetric mode with helium cooled bolometer, we have measured with precision the complex transmittance and reflectance of metallic meshes in the wavelength region 0.7<λ/g<5, where λ is the wavelength, and g is the period of the mesh. For λ≅g we observed a minimum power reflectance smaller than 10−4 at normal incidence. The important variations of the transmittance with the angle of incidence have been thoroughly investigated. Changes around the maximum transmittance are explained by the propagation of diffracted modes. Phase measurements show that a sharp dip appearing at λd with 1<λd/g<1.8 is related to the finite thickness of the mesh. From our measurements as well as other data precedently published it appears that there is a linear dependance between λd/g and the relative width of the slots of the mesh. All these deviations from classical models must absolutely be taken in account when designing high performances far infrared filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MÖLLER K.D. and ROTHSCHILD W.G., Far Infrared Spectroscopy, J. Wiley & sons Editor, New York, 1971.

    Google Scholar 

  2. STOREY J.W.V., WATSON D.M. and TOWNES C.H., Int. J. of Infrared and Millimeter Waves,1, (1), 15, 1980.

    Google Scholar 

  3. HOLAH G.D., Int. J. of Infrared and Millimeter Waves,1, (2), 225, 1980.

    Google Scholar 

  4. WIJNBERGEN J.J., Space Science Reviews, 17, 1975, D. Reidel Pub. Cy., Dordrecht, Holland.

    Google Scholar 

  5. HOLAH G.D., DAVIS B. and MORRISON N.D., Infrared Physics,19, 639, 1979.

    Google Scholar 

  6. BELLAND P. and LECULLIER J.C., Appl. Optics,19, (12), 1946, 1980.

    Google Scholar 

  7. COURTIN R., CORON N., ENCRENAZ T., GISPERT R., BRUSTON P., LEBLANC J., VIDAL-MADJAR A., Astron. Astrophys.,60, 115, 1977.

    Google Scholar 

  8. COURTIN R., CORON N., GISPERT R., LAMARRE J.M., LEBLANC J. and HARO J., The ESO Messenger,18, 17, 1979.

    Google Scholar 

  9. VOGEL P. and GENZEL L., Infrared Physics,4, 257, 1964.

    Google Scholar 

  10. RUSSEL E.E. and BELL E.E., Infrared Physics,6, 75, 1966.

    Google Scholar 

  11. RENK K.F. and GENZEL L., Appl. Optics,1, (5), 643, 1962.

    Google Scholar 

  12. ULRICH R., RENK K.F. and GENZEL L., IRE Trans. M.T.T., 363, 1963.

  13. ULRICH R., Infrared Physics7, 65, 1967.

    Google Scholar 

  14. ULRICH R., Infrared Physics,7, 37, 1967.

    Google Scholar 

  15. ULRICH R., Appl. Optics,7, (10), 1987, 1968.

    Google Scholar 

  16. SAKAI K., FUKUI T., TSUNAWA Y., and YOSHINAGA H., Jpn. J. Appl. Phys.,8, (8), 1046, 1969.

    Google Scholar 

  17. HEIDEMANN M., Infrared Detection Technique for Space Research, 225, 1972, D. Reidel Pub. Cy., Dordrecht, Holland.

    Google Scholar 

  18. HOLAH G.D. and SMITH S.D., J. Phys. D,5, 496, 1972.

    Google Scholar 

  19. THEISSING H.H. and CAPLAN P.J., J. Opt. Soc. Ann.,46, (11), 971, 1956.

    Google Scholar 

  20. RESSLER G.M. and MÖLLER K.D., Appl. Optics,6, (5), 893, 1967.

    Google Scholar 

  21. NEE S.F. and TRIVELPIECE A.W., Rev. Sci. Instr.,44, (7), 916, 1973.

    Google Scholar 

  22. SAKAI K. and YOSHIDA T., Infrared Physics,18, 137, 1978.

    Google Scholar 

  23. MITSUICHI A., OTSUKA Y., FUJITA S. and YOSHINAGA H., Jpn. J. Appl. Phys.,2, (9), 574, 1963.

    Google Scholar 

  24. BELL E.E., Infrared Physics,6, 57, 1966.

    Google Scholar 

  25. CORON N., Infrared Physics,16, 411, 1976.

    Google Scholar 

  26. PULFREY R.E., Appl. Optics,15, (2), 308, 1976.

    Google Scholar 

  27. Manufactured by AGAMICE, 4 rue Philidor 75020 Paris, France.

  28. Manufactured by Buckbee Mears Cy. St Paul Minnesota, U.S.A.

  29. PRIMICH R.I., IRE Trans. on Antennas and Propagation, 176, 1957.

  30. KARP S.N. and RADLOW J., IRE Trans. on Antennas and Propagation, 654, 1956.

  31. BRAVERMAN N.R., VOROB'EV L.V., SAKHAROV Ya.A., SOGLASNOVA V.A. and TISHCHENKO E.A., Sov. J. Opt. Technol.,42, (11), 667, 1975.

    Google Scholar 

  32. MARCUVITZ N., Waveguide Handbook, Dover Pub. Inc. New York 1965.

    Google Scholar 

  33. ULRICH R. and TACKE M., Appl. Phys. Lett.,22, (5), 251, 1973.

    Google Scholar 

  34. ULRICH R., Proc. Symp. Optical and acoustical microelectronics, J. Fox Ed., Polytech. Inst. N.Y.,23, 359, 1974.

    Google Scholar 

  35. MCPHEDRAN R.C. and MAYSTRE D., Appl. Phys.,14, (1), 1, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarre, J.M., Coron, N., Courtin, R. et al. Metallic mesh properties and design of submillimeter filters. Int J Infrared Milli Waves 2, 273–292 (1981). https://doi.org/10.1007/BF01007035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007035

Key Words

Navigation