Skip to main content
Log in

Application of the Taylor dispersion method in supercritical fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper describes some of the experimental and theoretical problems encountered when the Taylor dispersion method is applied to the measurement of diffusion coefficients near gas-liquid critical points. We have used our own measurements of diffusion of benzene and toluene in supercritical carbon dioxide, along with measurements from several other sources, to illustrate some of the experimental challenges. Special attention is given to the peak shape. The intercomparisons are greatly simplified by comparing the experimental data as functions of density, rather than pressure. We find large and unexplained discrepancies between the various experimental sources. We discuss the theoretical predictions for the relationships between the diffusion coefficients and diffusivities obtained from Taylor dispersion and dynamic light scattering in fluids near critical points. We conclude that there is no strong reason to press for Taylor dispersion measurements near the gas-liquid critical point of the carrier gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Sengers, Critical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971), p. 466.

    Google Scholar 

  2. J. Kestin, J. H. Whitelaw, and T. F. Zien, Physica 30:161 (1964).

    Google Scholar 

  3. A. Michels and J. V. Sengers, Physica 28:1238 (1962).

    Google Scholar 

  4. A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica 28:1201, 1216 (1962).

    Google Scholar 

  5. M. L. S. Matos Lopes, C. A. Nieto de Castro, and J. V. Sengers, Int. J. Thermophys. 13:283 (1992).

    Google Scholar 

  6. K. K. Liong, P. A. Wells, and N. R. Foster, J. Supercrit. Fluids 4:91 (1991).

    Google Scholar 

  7. A. A. Clifford and S. E. Coleby, Proc. Royal Soc. London A 433:63 (1991).

    Google Scholar 

  8. A. Alizadeh, C. A. Nieto de Castro, and W. Wakeham, Int. J. Thermophys. 1:243 (1980).

    Google Scholar 

  9. G. I. Taylor, Proc. Roy. Soc. A 219:186 (1953).

    Google Scholar 

  10. R. Aris, Proc. Roy. Soc. A 235:67 (1956).

    Google Scholar 

  11. N. Dahmen, A. Kordikowski, and G. M. Schneider, J. Chromatogr. 505:169 (1990).

    Google Scholar 

  12. L. A. M. Janssen, Chem. Eng. Sci. 31:215 (1976).

    Google Scholar 

  13. R. J. Nunge, T. S. Lin, and W. N. Gill, J. Fluid Mech. 51:363 (1972).

    Google Scholar 

  14. R. Span and W. Wagner, J. Phys. Chem. Ref. Data. (submitted).

  15. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, and J. T. R. Watson, J. Phys. Chem. Ref. Data 19:763 (1990).

    Google Scholar 

  16. I. Swaid and G. M. Schneider, Ber. Bunsenges. Phys. Chem. 83:969 (1979).

    Google Scholar 

  17. H. R. van den Berg, C. A. ten Seldam, and P. S. van der Gulik, J. Fluid Mech. 246:1 (1993).

    Google Scholar 

  18. H. R. van den Berg, C. A. ten Seldam, and P. S. van der Gulik, Int. J. Thermophys. 14:865 (1993).

    Google Scholar 

  19. J. M. H. Levelt Sengers, in Supercritical Fluid Technology, J. F. Ely and T. J. Bruno, eds. (CRC Press, Boca Raton, FL, 1991), p. 2.

    Google Scholar 

  20. J. M. H. Levelt Sengers, J. Supercrit. Fluids 4:215 (1991).

    Google Scholar 

  21. H.-J. Ng and D. B. Robinson, J. Chem. Eng. Data 23:325 (1978).

    Google Scholar 

  22. T. J. Bruno, J. Res. NIST 94:105 (1989).

    Google Scholar 

  23. C. Erkey, H. Gadalla, and A. Akgerman, J. Supercrit. Fluids 3:180 (1990).

    Google Scholar 

  24. A. Akgerman, private communication.

  25. R. Feist and G. M. Schneider, Sep. Sci. Technol. 17:261 (1982).

    Google Scholar 

  26. A. Wilsch, R. Feist, and G. M. Schneider, Fluid Phase Equil. 10:299 (1983).

    Google Scholar 

  27. A. Kopner, A. Hamm, J. Ellert, R. Feist, and G. M. Schneider, Chem. Eng. Sci. 42:2213 (1987).

    Google Scholar 

  28. R. Feist, Diploma thesis (Ruhr-Universität Bochum, 1980).

  29. J. Ellert, Diploma thesis (Ruhr-Universität Bochum, 1986).

  30. P. Swidersky, Diploma thesis (Ruhr-Universität Bochum, 1991).

  31. P. R. Sassiat, P. Mourier, M. H. Caude, and R. H. Rosset, Anal. Chem. 59:1164 (1987).

    Google Scholar 

  32. S. Umezawa and A. Nagashima, J. Supercrit. Fluids 5:242 (1992).

    Google Scholar 

  33. J. J. Suárez, J. L. Bueno, I. Medina, and J. Dizy, Afinidad IL(438):101 (1992) (in Spanish).

    Google Scholar 

  34. J. J. Suárez and J. L. Bueno, J. Chem. Eng. Data. (in press).

  35. J. V. Sengers and J. M. H. Levelt Sengers, Annu. Rev. Phys. Chem. 37:189 (1986).

    Google Scholar 

  36. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  37. R. F. Berg and M. R. Moldover, Phys. Rev. A 42:7183 (1990).

    Google Scholar 

  38. D. L. Henry, L. E. Evans, and R. Kobayashi, J. Chem. Phys. 66:1802 (1977).

    Google Scholar 

  39. B. J. Ackerson and H. J. M. Hanley, J. Chem. Phys. 73:3568 (1980).

    Google Scholar 

  40. H. Saad and E. Gulari, Ber. Bunsenges. Phys. Chem. 88:834 (1984).

    Google Scholar 

  41. R. F. Chang, T. Doiron, and I. L. Pegg, Int. J. Thermophys. 7:295 (1986).

    Google Scholar 

  42. R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2:1047 (1970).

    Google Scholar 

  43. M. A. Anisimov and S. B. Kiselev, Int. J. Thermophys. 13:873 (1992).

    Google Scholar 

  44. R. Mostert and J. Sengers, Fluid Phase Equil. 76:235 (1992).

    Google Scholar 

  45. R. F. Chang and J. M. H. Levelt Sengers, J. Phys. Chem. 90:5921 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Joseph Kestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levelt Sengers, J.M.H., Deiters, U.K., Klask, U. et al. Application of the Taylor dispersion method in supercritical fluids. Int J Thermophys 14, 893–922 (1993). https://doi.org/10.1007/BF00502114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502114

Key words

Navigation