Skip to main content
Log in

Thermophysical Properties of the CsPbCl3 Single Crystal Using Pulse Transient Method1

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The main features of the pulse transient method are presented. The method gives the specific heat c and thermal diffusivity a for a single measurement, while thermal conductivity λ is calculated according to λ=caρ, where ρ is the density. The pulse transient method is a dynamic method based on the measurement of the temperature response to a heat pulse produced within a specimen. An apparatus operating in the temperature range from −40 to 100°C is described. Errors are discussed. The thermophysical properties of a CsPbCl3 single crystal are determined using the pulse transient method for a temperature range between 10 and 65°C in the controlled heating and cooling regimes. The data show anomalies in the thermophysical properties around the phase transition temperature at 47°C. Discrepancies in comparison with previously published data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L' KubiCáar, Pulse method of measuring basic thermophysical parameters, in Wilson H Wilson's Comprehensive Analytical Chemistry, Vol. XII, Thermal Analysis, Part E, G. Svehla, ed. (Elsevier, Amsterdam, 1988), pp. 1–350.

  2. L' Kubicarcánd V. Bohác, in Proc. 25th Int. Thermal Conductivity Conf. 12th Int. Thermal Dilatation Symp., Pittsburgh, October 26–29, 1997, P. S. Gaal, ed. (Technomic, Basel, 1999), p. 135.

  3. P. Anderson and G. Báckstrom, Rev. Sci. Instrum. 47:205 (1976).

    Google Scholar 

  4. S.E. Gustaffson, Rev. Sci. Instrum. 62:797 (1991).

    Google Scholar 

  5. L'Kubicár, High Temp. High Press. 17:497 (1985).

    Google Scholar 

  6. J. Spišiak, L'. Kubicár, and D. Křivanková, Int. J. Thermophys. 12:593 (1991).

    Google Scholar 

  7. J.Šestak, Thermophysical properties of solids, their measurements and theoretical thermal analysis, in Wilson H Wilson's Comprehensive Analytical Chemistry, Vol. XII, Thermal Analysis, Part D, G. Svehla, ed. (Elsevier, Amsterdam, 1988), pp. 1–619.

    Google Scholar 

  8. M.J. Richardson, in Compendium of Thermophysical Property Measurement, Vol. 2, Recommended Measurement Techniques and Practices, K. D. Maglic, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum, New York, 1992), pp. 519–545.

    Google Scholar 

  9. E.D. West and E. F. Westrum, Jr., in Experimental Thermodynamics, Vol. 1, J. P. McCullough and D. W. Scott, eds. (Butterworths, London, 1968), pp. 333–365.

    Google Scholar 

  10. B. Douglass and E. G. King, in Experimental Thermodynamics, Vol. 1, J. P. McCullough and Donald W. Scott, eds. (Butterworths, London, 1968), pp. 293–330.

    Google Scholar 

  11. K. D. Maglic and R. E. Taylor, in Compendium of Thermophysical Property Measurement Methods, Vol. 1, Recommended Measurement Techniques and Practices, K. D. Maglic , A. Cezairliyan, and V. E. Peletsky, eds. (Plenum, New York, 1992), pp. 281–314.

    Google Scholar 

  12. M. J. Laubnitz, in Compendium of Thermophysical Property Measurement Methods, Vol. 1, Survey of Measurement Techniques, K. D. Maglic , A. Cezairliyan, and V. E. Peletsky, eds. (Plenum, New York, 1984), pp. 11–59.

    Google Scholar 

  13. N. A. Torberg-Jensen, J. Chem. Phys. 50:559 (1969).

    Google Scholar 

  14. T. Sakudo, H. Unoki, Y. Fujii, J. Kobayashi, and M. Yamada, Phys. Lett. A 28:542 (1969).

    Google Scholar 

  15. S. Hirotsu and T. Suzuki, J. Phys. Soc. Jap. 44:1604 (1978).

    Google Scholar 

  16. K. Nitsch, A. Cihlar , Z. Malkova , M. Rodová, and M. Vaneček, J. Cryst. Growth. 131:612 (1993).

    Google Scholar 

  17. S. Hirotsu, J. Phys. Soc. Jap. 31:552 (1971).

    Google Scholar 

  18. I. N. Flerov and K. S. Aleksandrov, Fiz. Tverd. Tela 16:1509 (1974) [in Russian].

    Google Scholar 

  19. Y. Fuji, S. Hashino, Y. Yamada, and G. Shirane, Phys. Rev. B 9:4549 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubičár, L., Boháč, V. & Nitsch, K. Thermophysical Properties of the CsPbCl3 Single Crystal Using Pulse Transient Method1 . International Journal of Thermophysics 21, 571–583 (2000). https://doi.org/10.1023/A:1006668520775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006668520775

Navigation