Skip to main content
Log in

Photoluminescence as a Function of Aggregated Size from n-Butyl-Terminated Silicon Nanoclusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Photoluminescence (PL) from alkyl-terminated silicon nanocrystallites as a function of size has been studied. Ultraviolet–blue luminescence (390–410 nm) is observed from as-prepared silicon nanoclusters with diameters from 3 to 8 nm. After 1 h of annealing at 162°C in 2-methoxyethyl ether (diglyme), the λ max of PL shifts from 360 to 420 nm. High-resolution transmission electron microscopy (HRTEM) images show that individual silicon nanoparticles are fused to form pairs of nanoparticles. FTIR spectra show that the alkyl groups remain on the surface of silicon nanoparticles. As the temperature is raised to 250°C for 1 h, the PL no longer shows any peak in the visible light region. TEM images show that the silicon nanoparticles are aggregated and fused uniformly in one single dimension, to form a strip, and these strips parallel each other. When the temperature is raised to 350°C these silicon nanoparticles form a large piece of silicon textile network, showing that functionalized alkyl surface does not persist above this temperature. A strong Si–O–Si asymmetric stretching vibration appears between 1000 and 1100 cm−1 at the expense of the C–H vibrational modes and there is no more change after 3 h of annealing at 250 or 350°C. These results provide strong evidence that the PL originates from quantum confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Shimizu et al. (1996). Jpn. J. Appl. Phys. 35, L276.

    Google Scholar 

  2. E. Bustarret et al. (1996). Thin Solid Films 276, 134.

    Google Scholar 

  3. See, e.g., (1998). MRS Bull. 23, 16.

  4. L. T. Canham (1990). Appl. Phys. Lett. 57, 1046.

    Google Scholar 

  5. D. Zhang et al. (1992). Mater. Res. Soc. Symp. Proc. 256, 35.

    Google Scholar 

  6. H. Koyama, Y. Matsushita, and N. Koshida (1998). J. Appl. Phys. 83, 1776.

    Google Scholar 

  7. H. W. H. Lee et al. (1994). Mater. Res. Soc. Symp. Proc. 351, 129.

    Google Scholar 

  8. X. Zhao et al. (1994). Phys. Rev. B 50, 18654.

    Google Scholar 

  9. C.-S. Yang et al. (1999). J. Am. Chem. Soc. 121, 5191.

    Google Scholar 

  10. T. Ito, T. Ohta, and A. Hiraki (1992). Japan J. Appl. Phys. 31, L1.

    Google Scholar 

  11. F. Koch, V. Petrova-Koch, and T. Muschik (1993). J. Luminesc. 57:271.

    Google Scholar 

  12. A. O. Konstantinov et al. (1995). Appl. Phys. Lett. 66, 2250.

    Google Scholar 

  13. R. A. Bley and S. M. Kauzlarich, in J. H. Fendler (ed.), Nanoparticles and Nanostructures Films (Wiley-VCH, Weinheim, 1998), p. 101.

    Google Scholar 

  14. R. A. Bley and S. M. Kauzlarich (1996). J. Am. Chem. Soc. 118, 12461.

    Google Scholar 

  15. R. A. Bley et al. (1996). Chem. Mater. 8, 1881.

    Google Scholar 

  16. R. A. Bley and S. M. Kauzlarich, in J. H. Fendler and I. Dékány (eds.), Nanoparticles in Solids and Solutions (Kluwer Academic Press, Dordrecht, 1996), p. 467.

    Google Scholar 

  17. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio (1999). Phys. Rev. B 60, 2704.

    Google Scholar 

  18. H. W. H. Lee et al. (in preparation).

  19. A. P. Alivisatos (1996). Science 271, 933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CS., Kauzlarich, S.M., Wang, Y.C. et al. Photoluminescence as a Function of Aggregated Size from n-Butyl-Terminated Silicon Nanoclusters. Journal of Cluster Science 11, 423–431 (2000). https://doi.org/10.1023/A:1009099416195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009099416195

Navigation