Skip to main content
Log in

Properties of some polysilane polymers: (n-PrSiMe) n , (i-PrSiMe) n , and (sec-BuSiMe) n

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

Three polysilane polymers, (n-PrSiMe) n , (i-PrSiMe) n , and (sec-BuSiMe) n , were synthesized and characterized by DSC. UV spectroscopy, wide-angle X-ray diffraction, and optical microscopy, all at variable temperatures. The known thermochromic transition of (n-PrSiMe) n at ∼48 C is associated with a change from an orthorhombic to an isotropic phase. (i-PrSiMe) n was examned as an insoluble and soluble (lowM w) fraction, both existing mainly in an orthohombic lattice at room temperature. (sec-BuSiMe) n has a mesophase structure at 25 C, undergoes a weak endothermic transition to a second (nematic) mesophase near 65 C, and becomes isotropic at ∼160 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews see R. D. Miller and J. Michl,Chem. Rev. 89, 1357 (1989); R. West, inThe Chemistry of Organic Silicon Compounds, S. Patai and Z. Rappoport, eds. (Wiley-Interscience, Chichester, UK. 1989). Chap. 19; R. West, inComprehensive Organometallic Chemistry, 2nd ed. (1994), in press.

    Google Scholar 

  2. L. H. Harrah and J. M. Zeigler,Macromolecules 20, 601 (1987); Y.-P. Sun, R. D. Miller, R. Sooriyakumaran, and J. Michl,J. Inorg. Organomet. Polym. 1, 3 (1991): J. W. Mintmire.Phys. Rev. B 39, 13350 (1984).

    Google Scholar 

  3. A. J. Lovinger, F. C. Schilling, F. A. Bovey, and J. M. Zeigler,Macromolecules 19, 2657, 2660 (1986); F. C. Schilling, A. J. Lovinger, J. M. Zeigler, D. D. Davis, and F.A. Bovey,Macromolecules 22, 3055 (1989).

    Google Scholar 

  4. E. K. Karikari, A. J. Greso, B. L. Farmer, R. D. Miller, and J. F. Rabolt,Macromolecules,26, 3937 (1993).

    Google Scholar 

  5. T. Asuke and R. West,Macromolecules 24, 344 (1991).

    Google Scholar 

  6. C.-H. Yuan and R. West,Macromolecules 27, 629 (1994).

    Google Scholar 

  7. P. Dave, S. C. Israel, and S. P. Sawan,Polym. Preprints 31, 566 (1990).

    Google Scholar 

  8. P. Trefonas, P. I. Djurovich, X.-M. Zhang, R. West, R. D. Miller, and D. Hofer,J. Polym. Sci. Polym. Lett. Ed. 21, 819 (1983).

    Google Scholar 

  9. M. A. Abu-Eid, R. B. King, and A. M. Kotliar,Eur. Polym. J. 28, 315 (1992); T. Karatsu, H. Kobayashi, E. Shinkai, and A. Kitamura,Chem. Lett. 2134 (1992); R. D. Miller, M. Baier, A. F. Diaz, E. J. Ginsburg, and G. M. Wallraff,Pure Appl. Chem. 64, 1291 (1992); H. Ban and K. Sukegawa,J. Polym. Sci. Polym. Chem. Ed. 26, 521 (1988); M. Fujino and H. Isaka,J. Chem. Soc. Chem. Commun. 466 (1989); G. E. Johnson and K. M. McGrane, ACS Symposium Series No. 358 (1987), p. 499; F. C. Schilling, F. A. Bovey, and J. M. Zeigler,Macromolecules 19, 2309 (1986); K. S. Schweitzer, L. A. Harrah, and J. M. Zeigler,Adv. Chem. Ser. 224, 379 (1990); A. R. Wolff, J. Maxka, and R. West,J. Polym. Sci. Polym. Chem. Ed. 26, 713 (1988); R. G. Kepler, and J. M. Zeigler,Mol. Cryst. Liq. Cryst. 175, 85 (1988); A. F. Diaz, M. Baier, G. M. Wallraff, R. D. Miller, J. Nelson, and W. Pietro,J. Electrochem. Soc. 138, 742 (1991); S. Irie, and M. Irie,Macromolecules 25, 1766 (1992); S. Tagawa,J. Photopolym. Sci. Technol. 4, 231 (1991); M. A. Abkowitz and M. Stolka,Synth. Met. 50, 395 (1992);Solid State Commun. 78, 269 (1991); S. Irie and M. Irie.Radiat. Phys. Chem. 40, 107 (1992); H. Yamashita and M. Tanaka,Chem. Lett. (1992) 1547; J. M. Zeigler, L. I. McLaughlin, and R. J. Perry,J. Inorg. Organomet. Polym. 1, 531 (1991); C.-L. Callender, C. A. Carere, J. Albert, L. L. Zhou, and D. J. Worsfold,J. Opt. Soc. Am. B. Opt. Phys. 9, 518 (1992).

    Google Scholar 

  10. K. Yokoyama and M. Yokoyama,Solid State Commun. 70, 241 (1989).

    Google Scholar 

  11. Since only three X-ray peaks were observed, the assignment of an orthorhombic lattice cannot be made certainly. The spacings are inconsistent with lattices of higher symmetry, but a monoclinic lattice remains as a possibility.

  12. Although (n-HexSiMe) n is amorphous by X-ray diffraction at all temperatures, it undergoes a thermochromic transition from 325 to 298 nm as the temperature is increased from −40 to 0 C; see Ref. 6.

  13. The closest analogy is probably with the orthorhombic structure of (Et2Si) n , with all-trans conformation andc=3.99 A. See A. J. Lovinger, D. D. Davis, F. C. Schilling, F. A. Bovey, and J. M. Zeigler,Polym. Commun. 30, 356 (1989).

    Google Scholar 

  14. T. Asuke and R. West,J. Inorg. Organomet. Polym. 4, 45 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor Zygmunt Lasocki, a fine chemist and a kind and gentle person.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asuke, T., West, R. Properties of some polysilane polymers: (n-PrSiMe) n , (i-PrSiMe) n , and (sec-BuSiMe) n . J Inorg Organomet Polym 5, 31–42 (1995). https://doi.org/10.1007/BF01157521

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01157521

Key Words

Navigation