Skip to main content
Log in

cis-Diaminedichloroplatinum(II) complexes reversibly bound to water-soluble polyaspartamide carriers for chemotherapeutic applications. II: Platinum coordination to ethylenediamine ligands attached to poly(ethylene oxide)-grafted carrier polymers

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

In continuation of previous investigations aiming at the development of macromolecular metal complexes for biomedical use, this communication describes poly(alkylene oxide)-grafted polymeric platinum complexes. The platinum-containing macromolecules are obtained from presynthesized polyaspartamide carriers bearing poly(ethylene/propylene oxide) side chains and hydroxyethyl side groups as hydrosolubilizing units in addition to ethylenediamine side group terminals for metal coordination. Platination is brought about by treatment of the carriers with tetrachloroplatinate(II) ion in aqueous solution at 25–60°C. pH 4–6. The polymeric products, purified by dialysis in aqueous solution, are isolated by freeze-drying in yields of 60–80%. Platinum contents are in the range of 4–15%. The metal is bound to the carrier through chelation with the ethylenediamine ligands, forming square-planarcis-dichloroethylenediamine-platinum(II) complex species as side-chain terminals. Initially, the product polymers dissolve smoothly in water. Although on room-temperature storage in the solid state they gradually turn insoluble as a consequence of intermolecular solid-state interaction, solubility is retained on low-temperature storage and in frozen aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Neuse, B. B. Patel, and C. W. N. Mbonyana,J. Inorg. Organomet. Polym. 1, 147 (1991).

    Google Scholar 

  2. U. Chiba, E. W. Neuse, J. C. Swarts, and G. J. Lamprecht,Angew. Makromol. Chem. 214, 137 (1994), and preceding papers in this series.

    Google Scholar 

  3. E. W. Neuse and C. W. N. Mbonyana, inInorganic and Metal-containing Polymeric Materials. J. E. Sheats, C. E. Carraher, C. U. Pittman, M. Zeldin, and B. Currell, eds. (Plenum Press, New York, 1990), p. 139.

    Google Scholar 

  4. E. W. Neuse and A. G. Perlwitz, inWater-soluble Polymers, S. W. Shalaby, C. L. McCormick, and G. B. Butler, eds. (Am. Chem. Soc., Washington, DC, 1991), Chap. 25.

    Google Scholar 

  5. M. J. Poznansky and R. L. Juliano,Pharmacol. Rev. 36, 277 (1984).

    Google Scholar 

  6. W. Wasiewski, M. J. Rasco, B. M. Martin, J. C. Detwiler, and J. W. Fenton,Thromb. Res. 8, 881 (1976).

    Google Scholar 

  7. J. H. Lee, J. Kopećek, and J. D. Andrade,J. Biomed. Mater. Res. 23, 351 (1989).

    Google Scholar 

  8. E. W. Merrill and E. W. Salzman.Am. Soc. Artific. Intern. Org. 6, 60 (1983).

    Google Scholar 

  9. K. Fujimoto, H. Inue, and Y. Ikada.Polym. Prepr. 33, 482 (1992).

    Google Scholar 

  10. R. Arshady, L. Illum, and S. S. Davis.Polm. Adran. Technol. 1, 345 (1990).

    Google Scholar 

  11. A. Abuchowski, T. van Es, N. C. Palczuk, and F. F. Davis,J. Biol. Chem. 252, 3578 (1977).

    Google Scholar 

  12. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai,Polym. Prepr. 33, 72 (1992).

    Google Scholar 

  13. M. C. Woodle,Proc. Int. Symp. Control. Rel. Bioact. Mater. 19, 22 (1992).

    Google Scholar 

  14. C. L. Litterst, T. E. Gram, R. L. Dedrick, A. F. LeRoy, and A. M. Guarino,Cancer Res. 36, 2340 (1976). Subsequently reviewed: C. L. Litterst.Agents and Actions 15, 520 (1984).

    Google Scholar 

  15. R. J. Belt, K. J. Himmelstein, and T. F. Patton,Cancer Treat. Rep. 63, 1515 (1979).

    Google Scholar 

  16. W. C. Cole and W. Wolf,Chem. Biol. Interact. 30, 223 (1980).

    Google Scholar 

  17. P. E. Gormley, J. M. Bull, A. F. LeRoy et al.Clin. Pharmacol. Ther. 25, 351 (1979).

    Google Scholar 

  18. J. Reedijk, A. M. J. Fichtinger-Shepman, A. T. van Oosterom, and P. van de Putte.Struct. Bond. 67, 53 (1987).

    Google Scholar 

  19. E. W. Neuse, A. G. Perlwitz, and A. P. Barbosa,J. Appl. Polym. Sci. 54, 57 (1994).

    Google Scholar 

  20. S. J. S. Kerrison and P. J. Sadler,JCS Chem. Commun. 1981, 61.

  21. H. Moroson and M. Rotman, inPolyelectrolytes and their Applications, A. Rembaum and E. Sélégny, eds. Reidel, Dordrecht. 1975), p. 187.

    Google Scholar 

  22. R. Pethig, P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent-Györgyi,Proc. Natl. Acad. Sci. USA 81, 2088 (1984).

    Google Scholar 

  23. G. B. Kauffman and D. O. CowanInorg. Synt. 8, 240 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuse, E.W., Caldwell, G. & Perlwitz, A.G. cis-Diaminedichloroplatinum(II) complexes reversibly bound to water-soluble polyaspartamide carriers for chemotherapeutic applications. II: Platinum coordination to ethylenediamine ligands attached to poly(ethylene oxide)-grafted carrier polymers. J Inorg Organomet Polym 5, 195–207 (1995). https://doi.org/10.1007/BF01057892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01057892

Key Words

Navigation