Skip to main content
Log in

Magnetic-field-induced semiconductor-semimetal transition in Bi-Sb alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Accurate and detailed measurements of the temperature dependence of the longitudinal magnetoresistance of single-crystal Bi-Sb alloys have been made, with static magnetic fields in the range 0–100 kG oriented parallel to the trigonal axis. Alloy concentrations were in the range 8–12 at.% Sb, and temperatures in the range 1–35 K. At very high fields the resistance increases with increasing temperature in a metallic manner with “ideal” and “residual” components, in contrast to the semiconductor behavior observed at zero field or low fields. For the high-field semimetal regime the electrical resistance behaves in a simple manner similar to a metal in zero field, in contrast to the complicated magnetoresistance phenomena for metals in low fields. This behavior can be understood in terms of a simple quasi-one-dimensional extreme-quantum-limit regime. The magnetic-field-induced semiconductor-semimetal transition is associated with an energy gap and changes of the energy-band structure which are of order 1 meV. Thermal activation energies for electrical conduction manifest this gap only at temperatures below approximately 20 K. Activation energies an order of magnitude larger which have been measured at considerably higher temperatures are apparently the direct gap at theL-point in the Brillouin zone and are not directly connected with the semiconductor-semimetal transition. Our results indicate that the zero-field indirectL-T energy gap increases from zero somewhere near 7–8 at. % Sb to values only as large as approximately 1.5 meV at 12 at. % Sb. At the magnetic-field induced transition there occurs evidence of an intermediate “excitonic insulator” phase, a resistance minimum below 10 K reminiscent of the Kondo alloy behavior. This anomalous regime is a property of the semiconductor-to-semimetal transition and cannot be associated with the well-known temperature and magnetic-field “freeze-out” of charge carriers in extrinsic semiconductors, or with magnetic ordering of the Kondo type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Lerner, K. F. Cuff, and L. R. Williams,Rev. Mod. Phys. 40, 770 (1968).

    Google Scholar 

  2. N. B. Brandt and E. A. Svistova,J. Low Temp. Phys. 2, 1 (1970); a number of publications by Brandt and coworkers are reviewed here.

    Google Scholar 

  3. S. Otake and S. Koike,J. Phys. Soc. Japan 24, 1176 (1968).

    Google Scholar 

  4. M. C. Steele,Phys. Rev. 97, 1720 (1955).

    Google Scholar 

  5. E. W. Fenton,Phys. Rev. 170, 816 (1968).

    Google Scholar 

  6. A. A. Abrikosov,J. Low Temp. Phys. 2, 37, 175 (1970).

    Google Scholar 

  7. J. Cizek and J. Paldus,J. Chem. Phys. 47, 3976 (1967); H. Fukutome,Progr. Theoret. Phys. 40, 998, 1227 (1968); E. W. Fenton,Phys. Rev. Letters 21, 1427 (1968).

    Google Scholar 

  8. J. Paldus and J. Cizek,J. Chem. Phys. 53 (Aug. 15, 1970) to be published. R. A. Harris and L. M. Falicov,J. Chem. Phys. 50, 4590 (1969); and references cited in these papers.

  9. T. M. Rice, A. S. Barker, B. I. Halperin, and D. B. McWhan,J. Appl. Phys. 40, 1337 (1969); S. N. Behera and K. S. Viswanathan,Can. J. Phys. 47, 477 (1969); and references cited therein.

    Google Scholar 

  10. K. F. Cuff, private communication.

  11. S. M. Bhagat and D. D. Manchon,Phys. Rev. 164, 966 (1967).

    Google Scholar 

  12. Yi-Han Kao, R. D. Brown, and R. L. Hartman,Phys. Rev. 136, A858 (1964).

  13. N. B. Brandt, L. G. Lyubitina, and N. A. Kryukova,Zh. Eksperim. i Teor. Fiz. 53, 134 (1967); English transl.Soviet Phys.—JETP 26, 93 (1968).

    Google Scholar 

  14. S. Golin,Phys. Rev. 176, 830 (1968).

    Google Scholar 

  15. E. J. Tichovolsky and J. G. Mavroides,Solid State Commun. 7, 927 (1968).

    Google Scholar 

  16. A. L. Jain,Phys. Rev. 114, 1518 (1959).

    Google Scholar 

  17. G. E. Smith, G. A. Baraff, and J. M. Rowell,Phys. Rev. 135, A1118 (1964).

    Google Scholar 

  18. A. A. Abrikosov,Zh. Eksperim. i Teor. Fiz. 56, 1391 (1969); English transl.Soviet Phys.—JETP 29, 746 (1969).

    Google Scholar 

  19. P. E. Hanley and E. H. Rhoderick,J. Phys. Chem. (Gr. Br.) 2, 365 (1969).

    Google Scholar 

  20. D. M. Brown and S. J. Silverman,Phys. Rev. 136, A290 (1964).

    Google Scholar 

  21. H. P. D. Lanyon,Phys. Rev. 130, 134 (1963).

    Google Scholar 

  22. R. Kuboet al., Solid State Phys. 17, 269 (1965).

    Google Scholar 

  23. M. D. Daybell and W. A. Steyert,Rev. Mod. Phys. 40, 380 (1968).

    Google Scholar 

  24. H. R. Riedl,Phys. Rev. 127, 162 (1962).

    Google Scholar 

  25. D. Balla and N. B. Brandt,Zh. Eksperim. i Teor. Fiz. 47, 1653 (1964); English transl.Soviet Physics—JETP 20, 1111 (1965).

    Google Scholar 

  26. N. B. Brandt and Ya. G. Ponomarev,Zh. Eksperim. i. Teor. Fiz. 50, 367 (1966); English transl.Soviet Physics—JETP 23, 244 (1966).

    Google Scholar 

  27. D. Jerome, T. M. Rice, and W. Kohn,Phys. Rev. 158, 462 (1967).

    Google Scholar 

  28. B. I. Halperin and T. M. Rice,Solid State Phys. 21, 115 (1968).

    Google Scholar 

  29. E. W. Fenton and R. R. Haering,Phys. Rev. 159, 593 (1967).

    Google Scholar 

  30. G. V. Chester, M. E. Fisher, and N. D. Mermin,Phys. Rev. 185, 760 (1969).

    Google Scholar 

  31. A. A. Galkin and O. M. Ignat'ev,Zh. Experim. i Teor. Fiz., Pisma v Red. 8, 290 (1968); English transl.:JETP Letters 8, 178 (1968).

    Google Scholar 

  32. E. N. Adams and T. D. Holstein,Phys. Chem. Solids 10, 254 (1959).

    Google Scholar 

  33. J. W. McClure and W. J. Spry,Phys. Rev. 165, 809 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenton, E.W., Jan, J.P. & Karlsson, Å. Magnetic-field-induced semiconductor-semimetal transition in Bi-Sb alloys. J Low Temp Phys 3, 147–174 (1970). https://doi.org/10.1007/BF00628324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00628324

Keywords

Navigation