Skip to main content
Log in

The effects of oxygen doping on copper Chevrel compounds

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Chevrel compounds Cu1.8Mo6S8−x O x have been studied, wherex=0.00, 0.05, and 0.10. In order to establish the effects of incorporating a small amount of oxygen into Cu1.8Mo6S8, we have measured lattice parameters, superconducting transition temperatureT c, and the temperature dependence of both the upper critical fieldH c2 and the magnetic susceptibility x. We show that the usual method of making this compound incorporates oxygen, and that this impurity may be removed by gettering the material with Y2S3. We observe that the substitution of oxygen for sulfur in Cu1.8Mo6S8 increasesT c and decreases the ratioc/a of the hexagonal lattice constants and x. A breakdown in the rigid-band approximation is indicated by a comparison of the relative signs of the effect onT c and that on x. In addition to these observations, we report on a correlation between hardness andT c of Cu1.8Mo6S8 and on the temperature dependence of the magnetic susceptibility of Cu3.2Mo6S8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yvon, inCurrent Topics in Materials Science, Vol. 3, E. Kaldis, Ed. (North-Holland, Amsterdam, 1979), Chapter 2, p. 53.

    Google Scholar 

  2. Ø. Fischer,Appl. Phys. 16, 1 (1978).

    Google Scholar 

  3. R. Baillif, K. Yvon, R. Flukiger, and J. Muller,J. Low Temp. Phys. 37, 231 (1979).

    Google Scholar 

  4. R. Flükigeret al., Solid State Commun. 23, 699 (1977).

    Google Scholar 

  5. K. Yvon,Solid State Commun. 24, 41 (1977).

    Google Scholar 

  6. U. Poppe and H. Wühl,J. Low Temp. Phys. 43, 371 (1981).

    Google Scholar 

  7. F. Pobell, inTernary Superconductors, G. K. Shenoy, B. D. Dunlap, and F. Y. Fradin, eds. (North-Holland, New York, 1981), Chapter 3, p. 35.

    Google Scholar 

  8. K. Noto, S. Morohashi, and N. Kobayashi,Jpn. J. Appl. Phys. Part 1 21, 965 (1982).

    Google Scholar 

  9. V. V. Rao, G. Rangarajan, and R. Srinivasan,J. Phys. F 14, 973 (1984).

    Google Scholar 

  10. Z. H. Leeet al., Physica 107B, 297 (1981).

    Google Scholar 

  11. A. W. Webb and R. N. Shelton,J. Phys. F 8, 261 (1978).

    Google Scholar 

  12. K. Kitazawa, T. Matsuura, and S. Tanaka, inTernary Superconductors, G. K. Shenoy, B. D. Dunlap, and F. Y. Fradin, eds. (North-Holland, New York, 1981), p. 83.

    Google Scholar 

  13. V. Sankaranarayananet al., Cryogenics 22, 305 (1982).

    Google Scholar 

  14. V. Sankaranarayanan, G. Rangarajan, and R. Srinivasan,J. Phys. F 14, 691 (1984).

    Google Scholar 

  15. G. J. Dudley, K. Y. Cheung, and B. C. H. Steele,J. Solid State Chem. 32, 259 (1980).

    Google Scholar 

  16. A. M. Umarjiet al., Ternary Superconductors, G. K. Shenoy, B. D. Dunlap, and F. Y. Fradin, eds. (North-Holland, New York, 1981), p. 87.

    Google Scholar 

  17. D. G. Hinks, J. D. Jorgensen, and H. C. Li,Phys. Rev. Lett. 51, 1911 (1983).

    Google Scholar 

  18. D. G. Hinks, J. D. Jorgensen, and H. C. Li,Solid State Commun. 49, 51 (1984).

    Google Scholar 

  19. D. W. Caponeet al., Phys. Rev. B 29, 6375 (1984).

    Google Scholar 

  20. S. Foner, E. J. McNiff, Jr., and D. G. Hinks,Phys. Rev. B 31, 6108 (1985).

    Google Scholar 

  21. D. Guenzburgeret al., Phys. Rev. B 32, 4398 (1985).

    Google Scholar 

  22. A. M. Umarjiet al., Mat. Res. Bull. 15, 1025 (1980).

    Google Scholar 

  23. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  24. B. T. Geilikman and V. Z. Kresin,Fiz. Tverd. Tela 1, 329 (1965) [Sov. Phys. Solid State 7, 2659 (1966)].

    Google Scholar 

  25. G. Bergmann and D. Rainer,Z. Phys. 263, 59 (1973).

    Google Scholar 

  26. B. Mitrovic, H. G. Zarate, and J. P. Carbotte,Phys. Rev. B 29, 184 (1984).

    Google Scholar 

  27. J. M. Coombes and J. P. Carbotte,J. Low Temp. Phys. 63, 431 (1986).

    Google Scholar 

  28. H. Nohl, W. Klose, and O. K. Andersen, inTopics in Current Physics, Vol. 32, Ø. Fischer and M. B. Maple, eds. (Springer, Berlin, 1982), p. 165.

    Google Scholar 

  29. W. H. Wright and D. M. Ginsberg,J. Low Temp. Phys. 64, 73 (1986).

    Google Scholar 

  30. W. M. Miller and D. M. Ginsberg,Phys. Rev. B 28, 3765 (1983).

    Google Scholar 

  31. R. Flükiger, R. Baillif, and E. Walker,Mat. Res. Bull. 13, 743 (1978).

    Google Scholar 

  32. F. Flükiger and R. Baillif, inTopics in Current Physics, Vol. 32, Ø. Fischer and M. B. Maple, eds. (Springer, Berlin, 1982), p. 113.

    Google Scholar 

  33. F. Fradin, J. W. Downey, and T. E. Klippert,Mat. Res. Bull. 11, 993 (1975).

    Google Scholar 

  34. R. Chevrel, M. Sergent, and Ø. Fischer,Mat. Res. Bull. 10, 1169 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W.H., Holmgren, D.J., Friedmann, T.A. et al. The effects of oxygen doping on copper Chevrel compounds. J Low Temp Phys 68, 109–123 (1987). https://doi.org/10.1007/BF00682624

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682624

Keywords

Navigation