Skip to main content
Log in

Wetting properties of liquid helium on rubidium metal

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Wetting properties of liquid helium on rubidium metal have been investigated in the temperature range 1.0–1.7 K using a heat conduction method. The rubidium surface is found to be wetted under saturated vapor conditions. Prewetting transitions have been observed for rather weak offsets from saturation, indicating that rubidium is close to the nonwetting limit at T = 0 K. Presumably because of substrate inhomogeneities, the prewetting transitions are experimentally found to be continuous and hysteretic. No evidence for the prewetting critical point has been found up to 1.7 K. The prewetting line verifies a simple linear relation between the liquid-vapour surface tension and the two third power of the chemical potential offset, but does not conform quantitatively to the simple model currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Zaremba and W. Kohn,Phys. Rev. B 15, 1769 (1977).

    Google Scholar 

  2. G. Vidali, G. Ihm, H. Y. Kim, and M. W. Cole,Surf. Sci. Report 12, 133 (1991).

    Google Scholar 

  3. E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. Lett. 67, 1007 (1991).

    Google Scholar 

  4. E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. B 46, 13967 (1992), and47, 14661 (1993).

    Google Scholar 

  5. P. J. Nacher and J. Dupont-Roc,Phys. Rev. Lett. 67, 2966 (1991).

    Google Scholar 

  6. P. Taborek and J. E. Rutledge,Phys. Rev. Lett. 68, 2184 (1992).

    Google Scholar 

  7. G. Mistura, PhD thesis, Pennsylvania State University (1993).

  8. G. Mistura, H. C. Lee, and M. H. W. Chan,Physica. B 194-196, 661 (1994).

    Google Scholar 

  9. W. F. Saam, J. Treiner, E. Cheng, and M. W. Cole,J. Low Temp. Phys. 89, 637 (1992).

    Google Scholar 

  10. J. Rutledge and P. Taborek,Phys. Rev. Lett. 69, 937 (1992).

    Google Scholar 

  11. N. Bigelow, P. J. Nacher, and J. Dupont-Roc,J. Low Temp. Phys. 89, 135 (1992).

    Google Scholar 

  12. E. Cheng, G. Mistura, H. C. Lee, M. H. W. Chan, M. W. Cole, C. Carraro, W. F. Saam, and F. Toigo,Phys. Rev. Lett. 70, 1854 (1993).

    Google Scholar 

  13. K. S. Ketola, S. Wang, and R. B. Hallock,Phys. Rev. Lett. 68, 201 (1992).

    Google Scholar 

  14. G. Mistura, H. C. Lee, and M. H. W. Chan,J. Low Temp. Phys. 89, 633 (1992).

    Google Scholar 

  15. H. Kellay, D. Bonn, and J. Meunier,Phys. Rev. Lett. 71, 2607 (1993).

    Google Scholar 

  16. See for instance R. C. Richardson and E. N. Smith,Experimental techniques in condensed matter physics at low temperatures, page 310 (Addition-Wesley, 1988).

  17. S. Teitel,J. of Low Temp. Phys. 46, 77 (1982), see in particular pp. 87-88.

    Google Scholar 

  18. M. E. Hayden, M. Cornut, and P. J. Nacher,Physica B 194-196, 677 (1994).

    Google Scholar 

  19. J. I. Gittleman and S. Bozowski,Phys. Rev. 128, 646 (1962). The fit ℛ(met) K = 7/T3 Kcm2/W taken from this reference may certainly be off more than an order of magnitude from the actual unknown Kapitza resistance between liquid helium and rubidium.

    Google Scholar 

  20. S. Dietrich, Contribution toPhase transitions and critical phenomena, Vol. 12, edited by C. Domb and J. Lebowitz (Academic Press, 1988).

  21. See for instance pp. 48–49 of Ref. 20.

  22. V. Ambegaokar, B. I. Halperin, D. R. Nelson, E. D. Siggia,Phys. Rev. B 21, 1806 (1980).

    Google Scholar 

  23. The value of μsat(T) is calculated from the saturated vapour pressure taken from R. L. Rusby and M. Durieux,Cryogenics 24, 363 (1984).

    Google Scholar 

  24. M. Schick and P. Taborek,Phys. Rev. B 46, 7312 (1992).

    Google Scholar 

  25. R. Bausch and R. Blossey,Phys. Rev. E 48, 1131 (1993).

    Google Scholar 

  26. D. Bonn, H. Kellay, and J. Meunier, to be published.

  27. See for instance A. Adamson,Physical Chemistry of Surfaces, Sec. XVI-16 (Wiley Interscience, 1990).

  28. There are some discrepancies in the values quoted in the literature, from 116 KÅ to 130 KÅ (see for instance D. O. Edwards and P. P. Fatouros,Phys. Rev. B 17, 2147 (1978)). We have taken the compromise suggested in this article.

    Google Scholar 

  29. Ref. 20, p. 60.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of Rochester University.

Laboratoire de L'Ecole Normale Supérieure et de l'Universté Pierre et Marie Curie, associé au CNRS (URA 18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demolder, B., Bigelow, N., Nacher, P.J. et al. Wetting properties of liquid helium on rubidium metal. J Low Temp Phys 98, 91–113 (1995). https://doi.org/10.1007/BF00754070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754070

Keywords

Navigation