Skip to main content
Log in

Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Elastic waves are scattered by an elastic inclusion. The interface between the inclusion and the surrounding material is imperfect: the displacement and traction vectors on one side of the interface are assumed to be linearly related to both the displacement vector and the traction vector on the other side of the interface. The literature on such inclusion problems is reviewed, with special emphasis on the development of interface conditions modeling different types of interface layer. Inclusion problems are formulated mathematically, and uniqueness theorems are proved. Finally, various systems of boundary integral equations over the interface are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Martin, Thin interface layers: adhesives, approximations and analysis, inElastic Waves and Ultrasonic Nondestructive Evaluation, S. K. Datta, J. D. Achenbach, and Y. S. Rajapakse, eds. (North-Holland, Amsterdam, 1990), pp. 217–222.

    Google Scholar 

  2. N. M. Newmark, C. P. Siess, and I. M. Viest, Tests and analysis of composite beams with incomplete interaction,Proc. Soc. Exp. Stress Anal. 9(175–92 (1951).

    Google Scholar 

  3. A. Toledano and H. Murakami, Shear-deformable two-layer plate theory with interlayer slip,Proc. ASCE, J. Eng. Mech. 114604–623 (1988).

    Google Scholar 

  4. G. S. Murty, A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces,Phys. Earth Planet. Interiors 1165–79 (1975).

    Google Scholar 

  5. A. R. Banghar, G. S. Murty, and I. V. V. Raghavacharyulu, On the parametric model of loose bonding of elastic half spaces,J. Acoust. Soc. Am. 601071–1078 (1976).

    Google Scholar 

  6. J. P. Jones and J. S. Whittier, Waves at a flexibly bonded interface,J. Appl. Mech. 34905–909 (1967).

    Google Scholar 

  7. M. Schoenberg, Elastic wave behavior across linear slip interfaces,J. Acoust. Soc. Am. 681516–1521 (1980).

    Google Scholar 

  8. S. Chonan, Vibration and stability of a two-layered beam with imperfect bonding,J. Acoust. Soc. Am. 72208–213 (1982).

    Google Scholar 

  9. Y. C. Angel and J. D. Achenbach, Reflection and transmission of elastic waves by a periodic array of cracks,J. Appl. Mech. 5233–41 (1985).

    Google Scholar 

  10. A. K. Mal, Guided waves in layered solids with interface zones,Int. J. Eng. Sci. 26873–881 (1988).

    Google Scholar 

  11. A. K. Mal and P. C. Xu, Elastic waves in layered media with interface features, inElastic Wave Propagation, M. F. McCarthy and M. A. Hayes, eds. (North-Holland, Amsterdam, 1989), pp. 67–73.

    Google Scholar 

  12. A. Pilarski and J. L. Rose, A transverse-wave ultrasonic oblique-incidence technique for interfacial weakness detection in adhesive bonds,J. Appl. Phys. 63300–307 (1988).

    Google Scholar 

  13. G. Persson and P. Olsson, 2-D elastodynamic scattering from a semi-infinite cracklike flaw with interfacial forces,Wave Motion 1321–41 (1991).

    Google Scholar 

  14. Z. L. Li and J. D. Achenbach, Reflection and transmission of Rayleigh surface waves by a material interphase,J. Appl. Mech. 58688–694 (1991).

    Google Scholar 

  15. A. Klarbring, Derivation of a model of adhesively bonded joints by the asymptotic expansion method,Int. J. Eng. Sci. 29493–512 (1991).

    Google Scholar 

  16. J. Baik and R. B. Thompson, Long wavelength elastic scattering from a planar distribution of inclusions,J. Appl. Mech. 52974–976 (1985).

    Google Scholar 

  17. J. M. Baik and R. B. Thompson, Ultrasonic scattering from imperfect interfaces: A quasi-static model,J. Nondestr. Eval. 4177–196 (1984).

    Google Scholar 

  18. L. M. Brekhovskikh,Waves in Layered Media (Academic Press, New York, 1980); 2nd Ed.

    Google Scholar 

  19. S. Rokhlin, M. Hefets, and M. Rosen, An elastic interface wave guided by a thin film between two solids,J. Appl. Phys. 513579–3582 (1980).

    Google Scholar 

  20. S. I. Rokhlin and Y. J. Wang, Analysis of boundary conditions for elastic wave interaction with an interface between two solids,J. Acoust. Soc. Am. 89503–515 (1991).

    Google Scholar 

  21. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze,Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (North-Holland, Amsterdam, 1979).

    Google Scholar 

  22. T. Mura,Micromechanics of Defects in Solids, (Martinus Nijhoff, Dordrecht, 1987); 2nd Ed.

    Google Scholar 

  23. P. A. Martin, On the scattering of elastic waves by an elastic inclusion in two dimensions,Quart. J. Mech. Appl. Math. 43275–291 (1990).

    Google Scholar 

  24. S. K. Datta and H. M. Ledbetter, Effect of interface properties on wave propagation in a medium with inclusions, inMechanics of Material Interfaces, A. P. S. Selvadurai and G. Z. Voyiadjis, eds. (Elsevier, Amsterdam, 1986), pp. 131–141.

    Google Scholar 

  25. R. Paskaramoorthy, S. K. Datta, and A. H. Shah, Effect of interface layers on scattering of elastic waves,J. Appl. Mech. 55871–878 (1988).

    Google Scholar 

  26. A. K. Mal and S. K. Bose, Dynamic elastic moduli of a suspension of imperfectly bonded spheres,Proc. Camb. Phil. Soc. 76587–600 (1974).

    Google Scholar 

  27. F. Lene and D. Leguillon, Homogenized constitutive law for a partially cohesive composite material,Int. J. Solids Struct. 18443–458 (1982).

    Google Scholar 

  28. F. Santosa and W. W. Symes, A model for a composite with anisotropic dissipation by homogenization,Int. J. Solids Struct. 25381–392 (1989).

    Google Scholar 

  29. J. Aboudi, Damage in composites—modeling of imperfect bonding,Composites Sci. Tech. 28103–128 (1987).

    Google Scholar 

  30. J. Aboudi, Wave propagation in damaged composite materials,Int. J. Solids Struct. 24117–138 (1988).

    Google Scholar 

  31. M. Kitahara, K. Nakagawa, and J. D. Achenbach, On a method to analyze scattering problems of an inclusion with spring contracts, inBoundary Element Methods in Applied Mechanics, M. Tanaka and T. A. Cruse, eds. (Pergamon, Oxford, 1988), pp. 239–244.

    Google Scholar 

  32. Z. Hashin, Composite materials with interphase: Thermoelastic and inelastic effects, inInelastic Deformation of Composite Materials, G. J. Dvorak, ed. (Springer, New York, 1991), pp. 3–34.

    Google Scholar 

  33. S. K. Datta, H. M. Ledbetter, Y. Shindo, and A. H. Shah, Phase velocity and attenuation of plane elastic waves in a particle-reinforced composite medium,Wave Motion 10171–182 (1988).

    Google Scholar 

  34. S. K. Datta, P. Olsson, and A. Boström, Elastodynamic scattering from inclusions with thin interface layers, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), pp. 109–116.

    Google Scholar 

  35. P. Olsson, S. K. Datta, and A. Boström, Elastodynamic scattering from inclusions surrounded by thin interface layers,J. Appl. Mech. 57672–676 (1990).

    Google Scholar 

  36. A. H. Nayfeh and E. A. M. Nassar, Simulation of the influence of bonding materials on the dynamic behavior of laminated composites,J. Appl. Mech. 45822–828 (1978).

    Google Scholar 

  37. D. S. Jones, Low-frequency scattering by a body in lubricated contact,Quart. J. Mech. Appl. Math. 36111–138 (1983).

    Google Scholar 

  38. A. C. Eringen and E. S. Suhubi,Elastodynamics, (Academic Press, New York, 1975), Vol. II.

    Google Scholar 

  39. R. H. Rand, Torsional vibrations of elastic prolate spheroids,J. Acoust. Soc. Am. 44749–751 (1968).

    Google Scholar 

  40. T. Hargé, Valeurs propres d'un corps élastique,C. R. Acad. Sci. Paris, Série I 311857–859 (1990).

    Google Scholar 

  41. N. I. Muskhelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).

    Google Scholar 

  42. T. S. Angell, R. E. Kleinman, and F. Hettlich, The resistive and conductive problems for the exterior Helmholtz equation,SIAM J. Appl. Math. 501607–1622 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, P.A. Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers. J Nondestruct Eval 11, 167–174 (1992). https://doi.org/10.1007/BF00566407

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566407

Key words

Navigation