Skip to main content
Log in

Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Cellulose acetate (CA) films with degree of substitution (d.s.) values of 1.7 and 2.5 were exposed to biologically active in-laboratory composting test vessels maintained at approximately 53 °C. The CA 1.7- and 2.5-d.s. films (thickness values of ∼0.5–1.0 and 2.0 mil, respectively) had completely disappeared by the end of 7- and 18-day exposure time periods in the biologically active bioreactors, respectively. The relatively small CA film weight loss observed in the poisoned control test vessels allows the conclusion that CA film erosion during the composting exposures resulted, at least in part, from biologically mediated processes. Under strictly anaerobic conditions, an active methanogenic inoculum was developed by acclimation of a sewage sludge to a synthetic municipal solid waste (SMSW) mixture at 42°C. The CA 1.7-d.s. film samples (0.5- to 1.0-mil thickness) were exposed in anaerobic serum bottles containing a 25% solids loading of SMSW in which methanogenic activity was rapidly established after introducing of the developed inoculum. For exposures of 30 days only small visually distinguishable fragments of the CA 1.7-d.s. films were recovered. In contrast, exposure of the CA 1.7-d.s. film to a poisoned control test vessel resulted in negligible weight loss. Therefore, degradation of the CA 1.7-d.s. films upon exposure to the anaerobic bioreactors was due, at least in part, to biologically mediated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Willson and D. Dalmat,BioCycle 24 20–23 (1983).

    Google Scholar 

  2. J. Glenn and R. Spencer, inBioCycle 32 34–84 (1991).

    Google Scholar 

  3. J. H. Crawford, inBiotechnology: Applications and Research, P. N. Cheremisinoff and R. P. Ouellette, ed. (Technomic, Lancaster, PA, 1985), pp. 68–77.

    Google Scholar 

  4. R. E. Hungate,Method. Microbiol. 3B 117–132 (1969).

    Google Scholar 

  5. B. Schink, inBiology of Anaerobic Microorganisms, A. J. B. Zehnder, ed. (John Wiley and Sons, New York, 1988), pp. 771–846.

    Google Scholar 

  6. C. R. Woese,Microbiol Rev. 51 221–271 (1987).

    PubMed  Google Scholar 

  7. M. T. Wolin and T. L. Miller, inBiology of Industrial Microorganisms, A. L. Demain and N. A. Solomon, eds. (Butterworths, Boston, 1985), pp. 189–221.

    Google Scholar 

  8. J. G. Ferry,J. Bacteriol. 174 5489–5495 (1992).

    PubMed  Google Scholar 

  9. W. Gujer and A. J. B. Zehnder,Wat. Sci. Technol. 15 127–167 (1983).

    Google Scholar 

  10. M. A. Barlaz, D. M. Schaefer, and R. K. Ham.Appl. Environ. Microbiol. 56 56–65 (1989).

    Google Scholar 

  11. G. P. Smith, B. Press, D. Eberiel, R. A. Gross, S. P. McCarthy, and D. L. Kaplan,Polym. Mat. Sci. Eng. 63 867–871 (1990).

    Google Scholar 

  12. G. P. Smith, B. Press, D. Eberiel, S. P. McCarthy, R. A. Gross, and K. L. Kaplan,Polym. Mat. Sci. Eng. 63 862–866 (1990).

    Google Scholar 

  13. J. M. Suflita, C. P. Gerba, R. K. Ham, A. C. Palmisano, W. L. Rathje, and J. A. Robinson,Environ. Sci. Technol. 26 1486–1495 (1992).

    Google Scholar 

  14. M. Z. A. Khan and Z. H. Abu-Ghararah,J. Environ. Eng. 117 376–380 (1991).

    Google Scholar 

  15. E. T. Reese,Ind. Eng. Chem. 49 89–92 (1957).

    Google Scholar 

  16. K. M. Downing, C. S. Ho, and D. W. Zabriskie,Biotechnol. Bioeng. 29 1086–1096 (1987).

    Google Scholar 

  17. H. Lee, R. J. B. To, R. K. Latta, P. Biely, and H. Schneider,Appl. Environ. Microbiol. 53 2831–2834 (1987).

    Google Scholar 

  18. O. Fuchs, inPolymer Handbook, J. Brandrup and E. H. Immergut, eds. (John Wiley & Sons, New York, 1989) pp. VII/400.

    Google Scholar 

  19. E. Luthi, N. B. Jasmat, and P. L. Bergquist,Appl. Microbiol. Biotechnol. 34 214–219 (1990).

    PubMed  Google Scholar 

  20. C. Buchanan, R. M. Gardner, and A. White, presented at the Conference on Biodegradable Materials and Packaging, Natick, MA, June (1992).

  21. R. A. Gross, J.-D. Gu, D. T. Eberiel, M. Nelson, and S. P. McCarthy, inFundamentals of Biodegradable Materials and Packaging, D. Kaplan, E. Thomas, and C. Ching, eds. (Technomic, Lancaster, PA, 1992).

    Google Scholar 

  22. M. Nelson, S. P. McCarthy, and R. A. Gross,Polym. Mat. Sci. Eng. 67 139–140 (1992).

    Google Scholar 

  23. J.-D. Gu, S. P. McCarthy, G. P. Smith, D. Eberiel, and R. A. Gross,Polym. Mat. Sci. Eng. 67 230–231 (1992).

    Google Scholar 

  24. J.-D. Gu, M. Gada, G. Kharas, D. Eberiel, S. P. McCarthy, and R. A. Gross,Polym. Mat. Sci. Eng. 67 351–352 (1992).

    Google Scholar 

  25. H. B. Goatoas,Composting Sanitary Disposal and Reclamation of Organic Waste (World Health Organization, Geneva, 1966).

    Google Scholar 

  26. Anonymous,J. Water Pollut. Control Fed. 36, 1479–1481 (1964).

  27. K. Gocke and H. G. Hoppe, inMicrobial Ecology of a Brackish Water Environment, G. Rheinheimer, ed. (Springer-Verlag, New York, 1977) pp. 61–70.

    Google Scholar 

  28. A. M. Fogarty and O. H. Tuovinen,Microbiol. Rev. 55 225–233 (1991).

    PubMed  Google Scholar 

  29. P. F. Strom,Appl. Environ. Microbiol. 50 899–905 (1985).

    PubMed  Google Scholar 

  30. R. T. Haug and W. F. Ellsworth,BioCycle 32 56–62 (1991).

    Google Scholar 

  31. D. J. Suler and M. S. Finstein,Appl. Environ. Microbiol. 33 345–350 (1977).

    Google Scholar 

  32. T. D. Brock,Appl. Microbiol. 29 495–501 (1975).

    PubMed  Google Scholar 

  33. W. G. Glasser, B. K. McCartney, and G. Samaranayake, Presented at the American Chemical Society meeting. Washington, DC, Aug. (1992).

  34. E. Senior and M. T. M. Balba, inMicrobiology of Landfill Sites, E. Senior, ed. (CRC Press, Boca Raton, FL, 1990), pp. 17–58.

    Google Scholar 

  35. P. L. McCarty,Public Works Sept., 107–112 (1964).

  36. S. Soundar and T. S. Chandra,J. Indust. Microbiol. 2 257–265 (1987).

    Google Scholar 

  37. S. Soundar and T. S. Chandra,J. Indust. Microbiol. 5 269–276 (1990).

    Google Scholar 

  38. R. B. Hespell and P. J. O'Bryan-Shah,Appl. Environ. Microbiol. 54 1917–1922 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Guest Editor: Dr. Graham Swift, Rohm & Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, JD., Eberiel, D.T., McCarthy, S.P. et al. Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. J Environ Polym Degr 1, 143–153 (1993). https://doi.org/10.1007/BF01418207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01418207

Key words

Navigation