Skip to main content
Log in

Duality in the Quantum Dissipative Villain Model and Application to Mesoscopic Josephson Junction Circuits

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We study exact self-duality in the model of a Brownian particle in a washboard (WB) potential which describes a Josephson junction (JJ) coupled to an environment, for arbitrary temperature and arbitrary form of the spectral density of the environment. To this end we introduce the quantum dissipative Villain model (QDVM), which models tunneling of a degree of freedom coupled to a linear quantum environment through an infinite set of states. We derive general exact mappings on various dual discrete representations (one-dimensional Coulomb gases or surface-roughening models) which are exactly self-dual. Then we show how the QDVM maps exactly onto the WB model and use duality relations to calculate the leading terms of the total impedance of a JJ circuit, for general frequency dependence of the spectral density of the environment and arbitrary temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol. 2, 2d ed. (World Scientific, Singapore, 1998).

    Google Scholar 

  2. A. J. Leggett, in Directions in Condensed Matter Physics, vol. 1., G. Grinstein and G. Mazenko, eds. (World Scientific, Singapore, 1986), p. 187.

    Google Scholar 

  3. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

    Google Scholar 

  4. G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990); D. A. Averin and K. K. Likharev, in Quantum Effects in Small Disordered Systems, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (Elsevier, Amsterdam, 1991).

    Google Scholar 

  5. G. L. Ingold and Yu. V. Nazarov, in Single Charge Tunneling, H. Grabert and M. Devoret, eds. (Plenum Press, New York, 1991).

    Google Scholar 

  6. A. J. Leggett, Phys. Rev. B, 30, 1208 (1984).

    Google Scholar 

  7. G. Falci, V. Bubanja, and G. Schön, Europhys. Lett. 16, 109 (1991); Z. Phys. B 85, 451 (1991).

    Google Scholar 

  8. A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).

    Google Scholar 

  9. M. P. A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190 (1985); W. Zwerger, Phys. Rev. B 35, 4737 (1987).

    Google Scholar 

  10. M. Sassetti, H. Schomerus, and U. Weiss, Phys. Rev. B 53, R2914 (1996).

    Google Scholar 

  11. P. Fendley and H. Saleur, cond-mat/9804173, 16 April 1998.

  12. P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett. 75, 8934 (1995); F. Lesage, H. Saleur, and S. Shorik, Phys. Rev. Lett. 76, 3384 (1996); U. Weiss, Solid State Commun. 100, 281 (1996); U. Weiss, in Tunneling and Its Implications, L. S. Schulman, A. Ranfagni, and D. Mugnai, eds. (World Scientific, Singapore, 1997).

    Google Scholar 

  13. S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1983).

    Google Scholar 

  14. J. Villain, J. Phys. (Paris) 36, 581 (1976).

    Google Scholar 

  15. S. Korshunov, Europhys. Lett. 9, 107 (1989); W. Zwerger, Z. Phys. B 78, 111 (1990); R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991).

    Google Scholar 

  16. G. Falci and U. Weiss, in Path-Integral from peV to TeV, R. Casalbuoni et al., eds. (World Scientific, Singapore, 1999), p. 379.

    Google Scholar 

  17. M. H. Devoret, D. Esteve, H. Grabert, G. L. Ingold, H. Pothier, and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990); S. M. Girvin, L. Glazman, M. Jonson, D. R. Penn, and M. D. Stiles, Phys. Rev. Lett. 54, 3183 (1990); D. A. Averin, Yu. V. Nazarov and A. A. Odintsov, Physica B 165, 166, 945 (1990); Yu. V. Nazarov, J. Siewert, and G. Falci, Europhys. Lett. 38, 365 (1997); R. Cristiano, L. Frunzio, G. Falci, and A. Tagliacozzo, in Tunneling and Its Implications, L. S. Schulman, A. Ranfagni, and D. Mugnai, eds. (World Scientific, Singapore, 1997), p. 161.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falci, G., Weiss, U. Duality in the Quantum Dissipative Villain Model and Application to Mesoscopic Josephson Junction Circuits. Journal of Superconductivity 12, 783–787 (1999). https://doi.org/10.1023/A:1007789127384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007789127384

Navigation