Skip to main content
Log in

Separation of local asymmetry and selective solvation effects using the quadrupole relaxation of the23Na+ and87Rb+ ions in acetonitrile-water mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Nuclear magnetic relaxation rates of23Na+,87Rb+, and14N in acetonitrile-water mixtures have been measured over the complete mixture range. The interaction of the quadrupole moment of ionic nuclei with electric field gradients is an excellent short ranged probe for the direct neighborhood of ions in solution. Thus the23Na+ and87Rb+ relaxation contains information about dynamics composition and symmetry of the inner solvation sphere in the mixed solvent. It was found that the relaxation rate of both ionic nuclei has an unexpected marked maximum in the acetonitrile (AN) rich region. The14N and2H relaxation rates of the solvent molecules revealed that the maximum could not be explained by dynamic effects. Further experimental results showed that it is caused by local symmetry changes. By measuring 1/T1 of the cationic nuclei in AN-H2O and AN-D2O it was possible for the first time to separate quantitatively asymmetry effects from selective solvation effects. It turned out that both cations are strongly preferentially hydrated. Comparison of the results of two approaches for the evaluation of the D2O-H2O isotope effect led to interesting hints concerning the location of the electric point dipole in acetonitrile molecules having contact with cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thermodynamic Behavior of Electrolytes in Mixed Solvents II, Adv. in Chemistry Series177, W. F. Furter, ed., (American Chemical Society, 1979).

  2. A. K. Covington and K. E. Newman,Pure Appl. Chem. 51, 2041 (1979).

    Google Scholar 

  3. B. Lindman and S. Forsen, inNMR and the Periodic Table, R. K. Harris and B. E. Mann, eds., (Academic Press, London, 1978), p. 123.

    Google Scholar 

  4. M. Holz, H. Weingärtner, and H. G. Hertz,J. Chem. Soc. Faraday I 73, 71 (1977).

    Google Scholar 

  5. M. Holz,J. Chem. Soc. Faraday I 74, 644 (1978).

    Google Scholar 

  6. M. Holz, H. Weingärtner, and H. G. Hertz,J. Solution Chem. 7, 705 (1978).

    Google Scholar 

  7. M. Holz and C. K. Rau,J. Chem. Soc. Faraday I 78, 1899 (1982).

    Google Scholar 

  8. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 77, 531 and 688 (1973).

    Google Scholar 

  9. A. J. Parker,Pure Appl. Chem. 53, 1437 (1981).

    Google Scholar 

  10. A. Fratiello, R. E. Lee, D. P. Miller, and V. N. Nishida,Mol. Phys. 13, 349 (1967).

    Google Scholar 

  11. E. G. Bloor and R. G. Kidd,Can. J. Chem. 46, 3425 (1968).

    Google Scholar 

  12. B. G. Cox, A. J. Parker, and W. E. Waghorne,J. Phys. Chem. 78, 1731 (1974).

    Google Scholar 

  13. A. K. Covington and J. M. Thain,J. Chem. Soc. Faraday I 70, 1879 (1974).

    Google Scholar 

  14. G. Rudakoff, H. Geppert, and R. Radeglia,Z. Chem. 17, 277 (1977).

    Google Scholar 

  15. C. Treiner and M. Fromon,J. Chem. Soc. Faraday I 76, 1062 (1980).

    Google Scholar 

  16. G. Petrella, M. Castagnolo, A. Sacco, and M. Petrella,J. Solution Chem. 9, 331 (1980).

    Google Scholar 

  17. K. Das, A. K. Das, and K. K. Kundu,Electrochim. Acta 26, 471 (1981).

    Google Scholar 

  18. P. Singh, I. D. McLeod, and A. J. Parker,J. Solution Chem. 11, 495 (1982).

    Google Scholar 

  19. A. I. Mishustin, A. I. Podkovyrin, and M. Kessler,Dokl. Akad. Nauk SSSR 245, 1420 (1979).

    Google Scholar 

  20. T. R. Stengle, Y. C. E. Pan, and C. H. Langford,J. Am. Chem. Soc. 94, 9037 (1972).

    Google Scholar 

  21. B. M. Braun and M. Holz,Z. Phys. Chem. NF, in press.

  22. E. v. Goldammer and H. G. Hertz,J. Phys. Chem. 74, 3734 (1970).

    Google Scholar 

  23. M. Holz and H. Weingärtner,J. Magn. Resonance 27, 153 (1977).

    Google Scholar 

  24. P. A. Casabella and P. J. Bray,J. Chem. Phys. 29, 1105 (1958).

    Google Scholar 

  25. D. E. Woessner, B. S. Snowden Jr., and E. T. Strom,Mol. Phys. 14, 265 (1968).

    Google Scholar 

  26. S. R. Cox and D. E. Williams,J. Comput. Chem. 2, 304 (1981).

    Google Scholar 

  27. H. G. Hertz and M. Holz,J. Phys. Chem. 78, 1002 (1974).

    Google Scholar 

  28. H. Weingärtner and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 81, 1204 (1977).

    Google Scholar 

  29. A. I. Mishustin and Yu. M. Kessler,J. Solution Chem. 4, 779 (1975).

    Google Scholar 

  30. R. D. Green and J. S. Martin,Can. J. Chem. 50, 3935 (1972).

    Google Scholar 

  31. A. L. van Geet,J. Am. Chem. Soc. 94, 5583 (1972).

    Google Scholar 

  32. C. Detellier and P. Laszlo,Helv. Chim. Acta 59, 1346 (1976).

    Google Scholar 

  33. C. Detellier, A. Gerstmans, and P. Laszlo,Inorg. Nucl. Chem. Letters 15, 93 (1979).

    Google Scholar 

  34. J. F. Hon,Mol. Phys. 15, 57 (1968).

    Google Scholar 

  35. M. H. Abraham, J. Liszi, and E. Papp,J. Chem. Soc. Faraday I 78, 197 (1982).

    Google Scholar 

  36. L. D. Supran and N. Sheppard,Chem. Comm., 832 (1967).

  37. H. Geppert, R. Radeglia, and R. Geyer,Z. Chem. 77, 23 (1977).

    Google Scholar 

  38. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  39. H. G. Hertz and H. Leiter,Z. Phys. Chem. NF 133, 45 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, B.M., Holz, M. Separation of local asymmetry and selective solvation effects using the quadrupole relaxation of the23Na+ and87Rb+ ions in acetonitrile-water mixtures. J Solution Chem 12, 685–701 (1983). https://doi.org/10.1007/BF00647381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647381

Key words

Navigation