Skip to main content
Log in

A direct carbon-13 and nitrogen-15 NMR study of europium(III) complexation-nitrate and europium(III)-isothiocyanate complexation in aqueous solvent mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A direct, low-temperature nuclear magnetic resonance spectroscopic study of europium(III)-nitrate contact ion-pairing has been completed, and preliminary results for europium(III)-isothiocyanate have been obtained. In water-acetone-Freon mixtures, at −110°C to −120°C, four15N NMR signals are observed for coordinated nitrate ion. Area evaluations of the signals and their concentration dependence indicate the formation of Eu(NO3)2+, Eu(NO3) 1+2 , and two higher complexes, possibly the tetra-, with either the penta-or hexanitrato. This correlates well with similar15N NMR results obtained for Ce(III), Pr(III), Nd(III), and Sm(III). As a result of a higher dielectric constant, complex formation is significantly less in water-methanol mixtures, wheein only three complexes form with Eu(NO3) 1+2 dominating at the highest anion concentrations. Competitive complexing experiments in water-methanol also were made by35Cl NMR chemical shift and linewidth measurements, as well as15N NMR. Initial experiments with the Eu3+-NCS system show four coordinated anion signals, displaced from the bulk anion peak by about −250 ppm and −2,500 ppm in the13C and15N NMR spectra, respectively. Area evaluations are consistent with the presence of Eu(NCS)2+ through Eu(NCS) 1-4 in these solutions. A consideration of the chemical shifts identified the nitrogen atom as the site of binding in the NCS. A discussion of these preliminary results, as well as those for several other metal-ions, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanthanide Probes in Life, Chemical and Earth Sciences, J.-C. G. Bünzli and G. R. Choppin (eds.) (Elsevier, Amsterdam, 1989).

    Google Scholar 

  2. Biochemistry of the Lanthanides, C. H. Evans, (Plenum Press, New York, 1990).

    Google Scholar 

  3. Lanthanides in Organic Synthesis, T. Imamoto, (Academic Press, New York, 1994).

    Google Scholar 

  4. A. Tsubouchi and T. Bruice,J. Am. Chem. Soc. 116, 11614 (1994).

    Google Scholar 

  5. J. Huskens, A. D. Kennedy, H. Van Bekhum, and J. A. Peters,J. Am. Chem. Soc. 117, 375 (1995).

    Google Scholar 

  6. H. B. Silber, T. Parker, and N. Nguyen,J. Alloys Compd. 180, 369 (1992).

    Google Scholar 

  7. D. T. Cronce and W. De W. Horrocks, Jr., Biochemistry,31, 7963 (1992).

    PubMed  Google Scholar 

  8. H. A. Tajmir-Riahi, R. Ahmad, and M. Naoui,J. Biomol. Struct. Dyn. 10, 863 (1993).

    Google Scholar 

  9. D. J. Calvo, A. E. Vazquez, and R. Miledi,Proc. Natl. Acad. Sci. U.S.A. 91, 12725 (1994).

    PubMed  Google Scholar 

  10. K. K. Karukstis, M. Y. Kao, D. A. Savin, R. A. Bittker, K. J. Kaphengst, C. M. Emetarom, N. R. Naito, and D. Y. Takamoto,J. Phys. Chem. 99, 4339 (1995).

    Google Scholar 

  11. I. E. Hill, C. W. V. Hogue, I. D. Clark, J. P. MacManus, and A. G. Szabo,Anal. Biochem. 216, 439 (1994).

    PubMed  Google Scholar 

  12. S. E. Burroughs, W. DeW. Horrocks, Jr., H. Ren, and C. B. Klee,Biochemistry 33, 10428 (1994).

    PubMed  Google Scholar 

  13. J.-C. G. Bünzli and J. M. Pfefferie,Helv. Chim. Acta 77, 323 (1994).

    Google Scholar 

  14. D. H. White, L. A. De Learie, D. A. Moore, R. A. Wallace, T. J. Dunn, W. P. Cacheris, H. Imura, and G. Choppin,Invest. Radiol. 26, (Suppl. 1) S226 (1991).

    Google Scholar 

  15. J. L. Sessler, T. D. Mody, G. W. Hemmi, V. Lynch, S. W. Young, and R. A. Miller,J. Am. Chem. Soc. 115, 10368 (1993).

    Google Scholar 

  16. K. Micskei, D. H. Powell, L. Helm, E. Brucher, and A. E. Merbach,Magn. Reson. Chem. 31, 1011 (1993).

    Google Scholar 

  17. K. Micskei, L. Helm, E. Brucher, and A. E. Merbach,Inorg. Chem. 32, 3844 (1993).

    Google Scholar 

  18. G. Gonzalez, D. H. Powell, V. Tissieres, and A. E. Merbach,J. Phys. Chem. 98, 53 (1994).

    Google Scholar 

  19. H. D. Powell, G. Gonzalez, V. Tissieres, K. Micskei, E. Brucher, L. Helm, and A. E. Merbach,J. Alloys Compd. 207, 20 (1994).

    Google Scholar 

  20. J. Lisowski, J. L. Sesler, V. Lynch, and T. D. Mody,J. Am. Chem. Soc. 117, 2273 (1995).

    Google Scholar 

  21. R. Ramasamy, D. Mota De Freitas, C. F. G. C. Geraldes, and J. A. Peters,Inorg. Chem. 30, 3188 (1991).

    Google Scholar 

  22. L. Helm and A. E. Merbach,Eur. J. Solid State Inorg. Chem. 28 (Suppl.), 245 (1991).

    Google Scholar 

  23. J.-C. G. Bünzli and V. Kaspararek,Inorg. Chim. Acta 182, 101 (1991).

    Google Scholar 

  24. S. Aime, M. Botta, and G. Ermondi,Inorg. Chem. 31, 4291 (1992).

    Google Scholar 

  25. C. F. G. C. Geraldes, A. D. Sherry, and G. E. Kiefer,J. Magn. Reson. 97, 290 (1992).

    Google Scholar 

  26. A. Milicic-Tang and J.-C. G. Bünzli,Inorg. Chim. Acta 192, 201 (1992).

    Google Scholar 

  27. J.-C. G. Bünzli, A. Milicic-Tang, and C. Mabillard,Helv. Chim. Acta 76, 1292 (1993).

    Google Scholar 

  28. J.-C. G. Bünzli, P. Froidevaux, and J. M. Harrowfield,Inorg. Chem. 32, 3306 (1993).

    Google Scholar 

  29. C. F. G. C. Geraldes, A. M. Urbano, M. A. Hoefnagel, and J. A. Peters,Inorg. Chem. 32, 2426 (1993).

    Google Scholar 

  30. S. J. Franklin and K. N. Raymond,Inorg. Chem. 33, 5794 (1994).

    Google Scholar 

  31. K. Nakumura, T. Yamaguchi, H. Wakita, M. Nomura, and G. R. Choppin,Kidorui 24, 100 (1994).

    Google Scholar 

  32. L. Helm, F. Foglia, T. Kowall, and A. E. Merbach,J. Phys. Condens. Matter 6, (Suppl. 23A), A 137 (1994).

    Google Scholar 

  33. R. K. Agarual, H. Agarual, and R. K. Sarlin,Synth. React. Inorg. Met.-Org. Chem. 24, 1681 (1994).

    Google Scholar 

  34. Th. Kowall, F. Foglia, L. Helm, and A. E. Merbach,J. Am. Chem. Soc. 117, 3790 (1995).

    Google Scholar 

  35. C. Cossy, L. Helm, D. H. Powell, and A. E. Merbach,New J. Chem. 19, 27 (1995).

    Google Scholar 

  36. H. B. Silber, R. Bakhshandehfar, L. A. Contreras, F. Gaizer, M. Gonsalves, and S. Ismail,Inorg. Chem. 29, 4473 (1990).

    Google Scholar 

  37. S. Lis and G. R. Choppin,Anal. Chem. 63, 2542 (1991).

    Google Scholar 

  38. J.-C. G. Bünzli,J. Alloys Compd. 192, 266 (1993).

    Google Scholar 

  39. H. B. Silber and R. L. Campbell,J. Alloys Compd. 192, 262 (1993).

    Google Scholar 

  40. H. Jing, X. Wang, Z. Hou, S. Chen, and D. Li,Polyhedron 13, 1035 (1994).

    Google Scholar 

  41. J.-C. G. Bünzli and J. P. Metabanzoulou,Helv. Chim. Acta 77, 140 (1994).

    Google Scholar 

  42. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, and R. Perrigan,J. Solution Chem. 18, 313 (1989).

    Google Scholar 

  43. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, D. Matejka, and R. Perrigan,J. Magn. Reson. 83, 358 (1989).

    Google Scholar 

  44. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, D. Haigh, F. Laghaei, and R. D. Perrigan,J. Magn. Reson. Series A107, 56 (1994).

    Google Scholar 

  45. A. Fratiello, V. Kubo-Anderson, S. Azimi, T. Flores, E. Marinez, D. Matejka, R. Perrigan, and M. Vigil,J. Solution Chem. 19, 811 (1990).

    Google Scholar 

  46. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan, and B. Yao,J. Solution Chem. 20, 893 (1991).

    Google Scholar 

  47. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan, and B. Yao,J. Solution Chem. 21, 651 (1992).

    Google Scholar 

  48. A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Laghaei, R. D. Perrigan, and F. Reyes,J. Solution Chem. 21, 1015 (1992).

    Google Scholar 

  49. A. Fratiello, V. Kubo-Anderson, S. Azimi, O. Chavez, F. Laghaei, and R. D. Perrigan,J. Solution Chemistry 22, 519 (1993).

    Google Scholar 

  50. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, O. Chavez, F. Laghaei, J. V. Ortega, and R. D. Perrigan,J. Solution Chem. 23, 1019, (1994).

    Google Scholar 

  51. A. Fratiello, V. Kubo-Anderson, S. Azimi, C. Fowler, E. Marinez, R. Perrigan, S. Shayegan, B. Yao,Magn. Reson. Chem. 30, 280 (1992).

    Google Scholar 

  52. A. Fratiello, V. Kubo-Anderson, E. Bolanos, O. Chavez, J. V. Ortega, R. D. Perrigan, A. Reyes, and S. M. Stoll,Magn. Reson. Chem. 33, 431 (1995).

    Google Scholar 

  53. A. Fratiello, V. Kubo-Anderson, A. Adanalyan, E. L. Bolanos, J. V. Ortega, R. D. Perrigan, and L. Saenz,J. Solution Chem. 24, 1249 (1995).

    Google Scholar 

  54. G. E. Pake,Paramagnetic Resonance (W. A. Benjamin, New York, 1962).

    Google Scholar 

  55. W. DeW. Horrocks, Jr., J. P. Sipe, III, and D. Sudnick,Nuclear Magnetic Resonance Shift Reagents, Ed. by R. E. Sievers, Acad. Press, Inc., p. 53 (1973).

  56. S. W. Hall, L. R. Avens, D. K. Veirs, and B. D. Zwick,203rd ACS Natl. Mtg. Abstracts, San Francisco, CA (1992).

  57. H. Wang, S. Zhao, P. Qian, Z. Cao, and K. Yu,Polyhedron 14, 407 (1995).

    Google Scholar 

  58. J.-C. Bünzli and M. M. Vuckovic,Inorg. Chim. Acta 73, 53 (1983).

    Google Scholar 

  59. J. C. Bünzli and J.-R. Yersin,Inorg. Chim. Acta 94, 301 (1984).

    Google Scholar 

  60. J.-C. G. Bünzli and C. Mabillard,New Front. Rare Earth Sci. Appl., Proc. Int. Conf. Rare Earth Dev. Appl. 1, 250 (1985).

    Google Scholar 

  61. D. H. Metcalf, R. C. Carter, R. G. Ghiradelli, and R. A. Palmer,Inorg. Chem. 25, 2175 (1986).

    Google Scholar 

  62. D. L. Nelson and D. E. Irish,J. Chem. Soc. Far. Trans. I,69, 156 (1973).

    Google Scholar 

  63. H. B. Silber and Max S. Trozier,Inorg. Chim. Acta 128, 267 (1987).

    Google Scholar 

  64. H. B. Silber,Inorg. Chim. Acta 33, 139 (1987).

    Google Scholar 

  65. M. L. Steele and D. L. Wertz,J. Am. Chem. Soc. 98, 4424 (1976).

    Google Scholar 

  66. L. S. Smith, Jr. and D. L. Wertz,J. Am. Chem. Soc. 97, 2365 (1975).

    Google Scholar 

  67. L. S. Smith, Jr., D. C. McCain, and D. L. Wertz,J. Am. Chem. Soc. 98, 5125 (1976).

    Google Scholar 

  68. H. B. Silber, D. Bouler, and T. White,J. Phys. Chem. 82, 775 (1978).

    Google Scholar 

  69. H. B. Silber and T. Mioduski,Inorg. Chem. 23, 1577 (1984).

    Google Scholar 

  70. H. A. Berman and T. R. Stengle,J. Phys. Chem. 79, 1001 (1975).

    Google Scholar 

  71. H. A. Berman, H. J. C. Yeh, and T. R. Stengle,J. Phys. Chem. 79, 2551 (1975).

    Google Scholar 

  72. J. B. Lambert and W. Schilf,J. Am. Chem. Soc. 110, 6364 (1988).

    Google Scholar 

  73. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,Inorg. Chem. 8, 69 (1969).

    Google Scholar 

  74. F. Tanaka, Y. Kawasaki, and S. Yamashita,J. Chem. Soc. Far. Trans I,84, 1083 (1988).

    Google Scholar 

  75. A. Fratiello, V. Kubo-Anderson, A. Adanalyan, E. Bolanos, J. Ortega, R. D. Perrigan, V. San Lucas, and A. Wong, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratiello, A., Kubo-Anderson, V., Bolanos, E. et al. A direct carbon-13 and nitrogen-15 NMR study of europium(III) complexation-nitrate and europium(III)-isothiocyanate complexation in aqueous solvent mixtures. J Solution Chem 25, 345–367 (1996). https://doi.org/10.1007/BF00972891

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972891

Key Words

Navigation