Skip to main content
Log in

Non-Adiabatic Dynamics in Mixed Quantum-Classical Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Non-adiabatic dynamics in mixed quantum-classical systems is investigated. The mixed quantum-classical system comprises a quantum system coupled to a classical environment. The starting point for the analysis is an evolution equation for the density matrix expressed in a basis of adiabatic quantum states that describes the full quantum dynamics of the subsystem and its coupling to the bath. Since the quantum dynamics influences the evolution of the “classical” degrees of freedom, a description in terms of single Newtonian trajectories is not possible. Through explicit calculations of a two-level quantum system coupled to a low dimensional bath we examine the details of mixed quantum-classical dynamics and its representation in terms of an ensemble of surface-hopping classical trajectory segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Pechukas, Phys. Rev. 181:166, 174 (1969).

    Google Scholar 

  2. E. Wigner, Phys. Rev. 40:749 (1932); K. Imre, E. Özizmir, M. Rosenbaum, and P. F. Zwiefel, J. Math. Phys. 5:1097 (1967).

    Google Scholar 

  3. R. Kapral and G. Ciccotti, J. Chem. Phys. 110:8919 (1999).

    Google Scholar 

  4. W. Y. Zhang and R. Balescu, J. Plasma Phys. 40:199 (1988); R. Balescu and W. Y. Zhang, J. Plasma Phys. 40:215 (1988).

    Google Scholar 

  5. Two-level mixed quantum-classical systems have been considered in C. C. Martens and J.-Y. Fang, J. Chem. Phys. 106:4918 (1996); A. Donoso and C. C. Martens, J. Phys. Chem. 102:4291 (1998).

    Google Scholar 

  6. See, for example, A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59:1 (1987).

    Google Scholar 

  7. S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 112, April 15 (2000).

  8. J. C. Tully, in Modern Methods for Multidimensional Dynamics Computations in Chemistry, D. L. Thompson, ed. (World Scientific, New York, 1998), p. 34; M. F. Herman, Annu. Rev. Phys. Chem. 45:83 (1994).

    Google Scholar 

  9. H. J. Berendsen and J. Mavri, J. Phys. Chem. 97:13464 (1993); P. Bala, B. Lesyng, and J. A. McCammon, Chem. Phys. Lett. 219:259 (1994); F. A. Bornemann, P. Nettesheim, and C. Schütte, J. Chem. Phys. 105:1074 (1996).

    Google Scholar 

  10. Y. Tanimura and S. Mukamel, J. Chem. Phys. 101:3094 (1994).

    Google Scholar 

  11. J. C. Tully, J. Chem. Phys. 93:1061 (1990); J. C. Tully, Int. J. Quantum Chem. 25:299 (1991); D. S. Sholl and J. C. Tully, J. Chem. Phys. 109:7702 (1998); S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101:4657 (1994); Kohen, F. Stillinger, and J. C. Tully, J. Chem. Phys. 109:4713 (1998).

    Google Scholar 

  12. L. Xiao and D. F. Coker, J. Chem. Phys. 100:8646 (1994); D. F. Coker and L. Xiao, J. Chem. Phys. 102:496 (1995); H. S. Mei and D.F. Coker, J. Chem. Phys. 104:4755 (1996).

    Google Scholar 

  13. F. Webster, P. J. Rossky, and P. A. Friesner, Comp. Phys. Comm. 63:494 (1991); F. Webster, E. T. Wang, P. J. Rossky, and P. A. Friesner, J. Chem. Phys. 100:483 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, S., Kapral, R. & Ciccotti, G. Non-Adiabatic Dynamics in Mixed Quantum-Classical Systems. Journal of Statistical Physics 101, 225–242 (2000). https://doi.org/10.1023/A:1026458004345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026458004345

Navigation