Skip to main content
Log in

Theory of quantum dynamics in fermionic environment: An influence functional approach

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Quantum dynamics of a particle coupled to a fermionic environment is considered, with particular emphasis on the formulation of macroscopic quantum phenomena. The framework is based on a path integral formalism for the real-time density matrix. After integrating out of the fermion variables of the environment, we embed the whole environmental effects on the particle into the so-called influence functional in analogy to Feynman and Vernon's initial work. We then show that to the second order of the coupling constant, the exponent of the influence functional is in exact agreement with that due to a linear dissipative environment (boson bath). Having obtained this, we turn to a specific model in which the influence functional can be exactly evaluated in a long-time limit (long compared to the inverse of the cutoff frequency of the environmental spectrum). In this circumstance, we mainly address our attention to the quantum mechanical representation of the system-plus-environment from the known classical properties of the particle. It is shown that, in particular, the equivalence between the fermion bath and the boson bath is generally correct for a singlechannel coupling provided we make a simple mapping between the nonlinear interaction functions of the baths. Finally, generalizations of the model to more complicated situations are discussed and significant applications and connections to certain practically interesting problems are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman and F. L. Vernon, Jr.,Ann. Phys. 24:118 (1963).

    Google Scholar 

  2. A. O. Caldeira and A. J. Leggett,Ann. Phys. 149:374 (1983); (E)153:445 (1984).

    Google Scholar 

  3. A. O. Caldeira and A. J. Leggett,Physica 121A:587 (1983).

    Google Scholar 

  4. A. Schmid,J. Low Temp. Phys. 49:609 (1982).

    Google Scholar 

  5. V. Ambegaokar, inPercolation, Localization and Superconductivity, A. M. Goldman and S. Wolf, eds. (Plenum Press, New York, 1984).

    Google Scholar 

  6. A. J. Leggett, S. Chakravarty, A. T. Dosey, M. P. A. Fisher, A. Garg, and W. Zwerger,Rev. Mod. Phys., to appear.

  7. D. R. Hamann,Phys. Rev. B 2:1373 (1970).

    Google Scholar 

  8. C. C. Yu and P. W. Anderson,Phys. Rev. B 29:6165 (1984).

    Google Scholar 

  9. L.-D. Chang and S. Chakravarty,Phys. Rev. B 31:154 (1985).

    Google Scholar 

  10. P. Hedegård and A. O. Caldeira, preprint.

  11. H. Kleinen,Fortschr. Phys. 26:565 (1978).

    Google Scholar 

  12. L. V. Keldysh,Sov. Phys. JETP 20:1018 (1965).

    Google Scholar 

  13. L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics (Benjamin, New York, 1962).

    Google Scholar 

  14. P. Nozières and C. T. De Dominicis,Phys. Rev. 178:1097 (1969).

    Google Scholar 

  15. N. I. Muskhelishvili,Singular Integral Equations (Groningen, Holland, 1953).

  16. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (Benjamin, New York, 1972), Chapter 3.

    Google Scholar 

  17. J. Rzewuski,Quantum Field Theory II (Hefner, New York, 1968); S. Coleman, Erice Lectures, 1974, inLaws of Hadronic Matter, A. Zichichi, ed., p. 172.

    Google Scholar 

  18. E. Ben-Jacob and Y. Gefen,Phys. Lett. 108A:289 (1985).

    Google Scholar 

  19. G. Iche and P. Nozières,Physica 91A:485 (1978).

    Google Scholar 

  20. A. J. Leggett,Phys. Rev. B 30:1208 (1984).

    Google Scholar 

  21. F. Guinea, V. Hakim, and A. Muramatsu,Phys. Rev. B 32:4410 (1985).

    Google Scholar 

  22. A. I. Larkin and Y. N. Ovchinnikov,Pis'ma Zh. Eksp. Teor. Fiz. 37:322 (1983) [JETP Lett. 37:382 (1983)];Zh. Eksp. Teor. Fiz. 86:719 (1984) [Sov. Phys. JETP 59:420 (1984)]; H. Grabert, U. Weiss, and P. Hanggi,Phys. Rev. Lett. 52:2193 (1984); H. Grabert and U. Weiss,Z. Phys. 556:171 (1984).

    Google Scholar 

  23. L. D. Chang and S. Chakravarty,Phys. Rev. B 529:130 (1984); (E)30:1566 (1984); H. Grabert, P. Olschowsk, and U. Weiss,Phys. Rev. B 32:3348 (1985); D. Waxman and A. J. Leggett,Phys. Rev. B 32:4450 (1985).

    Google Scholar 

  24. P. Hanggi,J. Stat. Phys. 42:105 (1986).

    Google Scholar 

  25. J. H. Jensen and J. A. Sauls, preprint.

  26. C. Aslangul, N. Pottier, and D. Saint-James,Phys. Lett. 110A:249 (1985); H. Dekker, preprint; P. Ao, private communications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Yc. Theory of quantum dynamics in fermionic environment: An influence functional approach. J Stat Phys 47, 17–55 (1987). https://doi.org/10.1007/BF01009034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009034

Key words

Navigation