Skip to main content
Log in

Duality Relations for Non-Ohmic Composites, with Applications to Behavior near Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Keller, Dykhne, and others have exploited duality to derive exact results for the effective behavior of two-dimensional Ohmic composites. This paper addresses similar issues in the non-Ohmic context. We focus primarily on three different types of nonlinearity: (a) the weakly nonlinear regime; (b) power-law behavior; and (c) dielectric breakdown. We first make the consequences of duality explicit in each setting. Then we draw conclusions concerning the critical exponents and scaling functions of “dual pairs” of random non-Ohmic composites near a percolation threshold. These results generalize, unify, and simplify relations previously derived for nonlinear resistor networks. We also discuss some self-dual nonlinear composites. Our treatment is elementary and self-contained; however, we also link it with the more abstract mathematical discussions of duality by Jikov and Kozlov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. B. Keller, J. Appl. Phys. 34:911 (1963).

    Google Scholar 

  2. J. B. Keller, J. Math. Phys. 5:548 (1964).

    Google Scholar 

  3. A. M. Dykhne, Sov. Phys. JETP 32:63 (1971).

    Google Scholar 

  4. K. S. Mendelson, J. Appl. Phys. 46:917 (1975).

    Google Scholar 

  5. K. S. Mendelson, J. Appl. Phys. 46:4740 (1975).

    Google Scholar 

  6. W. Kohler and G. Papanicolau, in Macroscopic Properties of Disordered Media, Lecture Notes in Physics, Vol. 154 (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  7. J. Nevard and J. B. Keller, J. Math. Phys. 26:2761 (1985).

    Google Scholar 

  8. G. W. Milton, Phys. Rev. B 38:11296 (1988).

    Google Scholar 

  9. J. Helsing, G. W. Milton and A. B. Movchan, J. Mech. Phys. Solids 45:565 (1997).

    Google Scholar 

  10. R. Hill, J. Mech Phys. Solids 13:89 (1965).

    Google Scholar 

  11. J. W. Hutchinson, Proc. R. Soc. Lond. A 348:101 (1976).

    Google Scholar 

  12. V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  13. S. M. Kozlov, Func. Anal. Appl. 38:171 (1983).

    Google Scholar 

  14. J. P. Straley and S. W. Kenkel, Phys. Rev. B 29:6299 (1984).

    Google Scholar 

  15. D. J. Bergman and D. Stroud, Solid State Physics 46:147 (1992); and references therein.

    Google Scholar 

  16. M. J. Miksis, SIAM J. Appl. Math. 43:1140 (1983).

    Google Scholar 

  17. G. F. Dell'Antonio, Rep. Math. Phys. 26:169 (1988).

    Google Scholar 

  18. D. Stroud and P. M. Hui, Phys. Rev. B 37:8719 (1988).

    Google Scholar 

  19. R. Blumenfeld and D. J. Bergman, Phys. Rev. B 40:1987 (1989).

    Google Scholar 

  20. R. Blumenfeld, Ph. D. Thesis, Tel Aviv University, (1990).

  21. J. R. Willis, J. Appl. Mech. 50:1202 (1983).

    Google Scholar 

  22. D. R. S. Talbot and J. R. Willis, IMA J. Appl. Math. 35:39 (1985); 39:215 (1987).

    Google Scholar 

  23. P. Ponte Castaneda, SIAM J. Appl. Math. 52:1321 (1992).

    Google Scholar 

  24. P. Ponte Castaneda, G. deBotton, and G. Li, Phys. Rev. B 46:4387 (1992).

    Google Scholar 

  25. O. Levy and D. J. Bergman, Phys. Rev. B 46:7189 (1992).

    Google Scholar 

  26. J. E. Sipe and R. W. Boyd, Phys. Rev. A 46:1614 (1992).

    Google Scholar 

  27. V. V. Jikov, Diff. Uravnen. 27:42 (1991). [Engl. translation: Differ. Eqns. 27:32 (1991).]

    Google Scholar 

  28. V. V. Jikov, Mat. Sbornik 138:47 (1992).

    Google Scholar 

  29. R. Rammal, C. Tannous, P. Breton and A.-M. S. Tremblay, Phys. Rev. Lett. 54:1718 (1985).

    Google Scholar 

  30. R. Rammal, C. Tannous, and A.-M. S. Tremblay, Phys. Rev. A 31:2662 (1985).

    Google Scholar 

  31. R. Rammal, J. de Physique Lett. 46:L129 (1985).

    Google Scholar 

  32. D. C. Wright, D. J. Bergman and Y. Kantor, Phys. Rev. B 33:396 (1986).

    Google Scholar 

  33. R. R. Tremblay, G. Albinet and A.-M. S. Tremblay, Phys. Rev. B 45:755 (1992).

    Google Scholar 

  34. O. Levy and D. J. Bergman, Phys. Rev. B. 50:3652 (1994).

    Google Scholar 

  35. D. J. Bergman, In Composite Media and Homogenization Theory, An ICTP Workshop, Trieste, Italy, January 1990, G. DalMaso and G. F. Dell'Antonio, eds. (Birkhäuser, 1991).

  36. W. M. V. Wan, H. C. Lee, P. M. Hui and K. W. Yu, Phys. Rev. B. 54:3946 (1996).

    Google Scholar 

  37. S. W. Kenkel and J. P. Straley, Phys. Rev. Lett. 49:767 (1982).

    Google Scholar 

  38. J. P. Straley, J. Phys. C 9:783 (1976).

    Google Scholar 

  39. K. K. Kardhan, B. K. Chakrabarti, and A. Hansen, eds., Nonlinearity and Breakdown in Soft Condensed Matter, Lecture Notes in Physics, Vol. 437 (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  40. P. M. Duxbury, P. D. Beale and P. L. Leath, Phys. Rev. Lett. 57:1052 (1986).

    Google Scholar 

  41. C. J. Lobb, P. M. Hui, and D. Stroud, Phys. Rev. B 36:1956 (1986).

    Google Scholar 

  42. D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10:511 (1985).

    Google Scholar 

  43. P. Roussignol, D. Ricard, K. C. Rustagi, and C. Flytzanis, Opt. Commun. 55:1431 (1985).

    Google Scholar 

  44. D. Ricard, in Nonlinear Optics: Materials and Devices, C. Flytzanis and J. L. Oudar, eds. (Springer-Verlag, Berlin, 1986), p. 154.

    Google Scholar 

  45. G. R. Olbright, N. Peyghambarian, S. W. Koch, and L. Banyai, Opt. Lett. 12:413 (1987).

    Google Scholar 

  46. D. Stroud and V. E. Wood, J. Opt. Soc. Am. B 6:778 (1989).

    Google Scholar 

  47. D. Ricard, Physica A 157:301 (1989), and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, O., Kohn, R.V. Duality Relations for Non-Ohmic Composites, with Applications to Behavior near Percolation. Journal of Statistical Physics 90, 159–189 (1998). https://doi.org/10.1023/A:1023251701546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023251701546

Navigation