Skip to main content
Log in

Regulation of the apolipoprotein B in heterozygous hypobeta-lipoproteinemic knock-out mice expressing truncated apoB, B81. Low production and enhanced clearance of apoB cause low levels of apoB

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Low levels of cholesterol are protective against development of coronary artery disease. Heterozygous hypobetalipoproteinemic individuals expressing truncated apolipoprotein (apo)B as a result of mutation in the capob gene have low levels of cholesterol and apoB in their plasma. To study the molecular mechanism of low levels of apoB in these individuals, we employed a previously reported knock out mouse model generated by targeted modification of the apob gene. The heterozygous, apoB-100/B-81, mice express full length and truncated apoB, B-81, and have 20 and 35% lower levels of total cholesterol and apoB, respectively, when compared to WT (apoB-100/B-100) mice. The majority of the truncated apoB, B-81, fractionated in the VLDL- density range. The mechanism of low levels of apoB in B-100/B-81 mice was examined. Total hepatic apoB mRNA levels decreased by 15%, primarily due to lower levels of apoB-81 mRNA. Since apoB mRNA transcription rates were similar in B-100/B-100 and B-100/B-81 mice, low levels of mutant apoB-81 mRNA occurred by enhanced degradation of apoB mRNA transcript containing premature translational stop codon. ApoB synthesis measured on isolated hepatocytes decreased in B-100/B-81 mice by 35%, while apoB-48, apoE, and apoAI syntheses remained unchanged. Metabolic studies using whole animal showed a 32% decrease in triglyceride secretion rates, consistent with the apoB secretion rates. Inhibition of receptor-mediated clearance of apoB-81-containing particles resulted in greater relative accumulation of apoB-81 in plasma than apoB-100, suggesting enhanced clearance of apoB-81-containing particles. These results demonstrate that low levels of apoB in heterozygous hypobetalipoproteinemic mice occurs by low rates of apoB secretion, and increased clearance of truncated apoB. Similar mechanisms appear to contribute to low levels of apoB in hypobetalipoproteinemic humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kane JP: Apolipoprotein B: Structural and metabolic heterogeneity. Ann Rev Biochem 45: 637–650, 1983

    Google Scholar 

  2. Lau PP, Xiong WJ, Zhu HJ, Chen SH, Chan L: Apolipoprotein B mRNA editing is an intracellular event that occurs posttranscriptionally coincident with splicing and polyadenylation. J Biol Chem 266: 20550–20554, 1991

    PubMed  Google Scholar 

  3. Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E: Apolipoprotein B mRNA editing in 12 different mammalian species: Hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 34: 1367–1383, 1993

    PubMed  Google Scholar 

  4. Srivastava RAK, Tang J, Baumann D, Schonfield G: Hormonal and nutritional stimuli modulate apolipoprotein B mRNA editing in mouse liver. Biochem Biophys Res Commun 188: 135–141, 1992

    PubMed  Google Scholar 

  5. Yang C-Y, Chen S-H, Gianturco SH, Bradley WA, Sparrow JT, Tanimura M, Lee F-S, Gu Z-W, Gotto AM, Chan L: Sequence, structure, receptor binding domains and internal repeats of human apolipoprotein B-100. Nature (London) 323: 738–742, 1986

    Google Scholar 

  6. Linton MF, Farese RV Jr., Young SG: Familial Hypobetalipoproteinemia. J Lipid Res 34: 521–541, 1993

    PubMed  Google Scholar 

  7. Groenewegen WA, Krul ES, Averna MA, Pulai J, Schonfeld G: Dysbetalipoproteinemia in a kindred with hypobetalipoproteinemia due to mutations in the genes for apoB (apoB-70.5) and apoE (apoE2). Arterioscler Thromb 14: 1695–1704, 1994

    PubMed  Google Scholar 

  8. Srivastava N, Noto D, Averna M, Pulai J, Srivastava RAK, Cole TG, Latour MA, Patterson BW, Schonfeld G: A new apolipoprotein B truncation (apo B-43.7) in familial hypobetalipoproteinemia: Genetic and metabolic studies. Metab Clin Exp 45: 1296–1304, 1996

    PubMed  Google Scholar 

  9. Parhofer KG, Barrett PHR, Bier DM, Schonfeld G: Positive linear correlation between the length of truncated apolipoprotein B and its secretion rate (in vivo studies in apoB-89, apoB-75, apoB-54.8 and apoB-31 heterozygotes). J Lipid Res 37: 844–852, 1996

    PubMed  Google Scholar 

  10. Aguilar-Salinas CA, Barrett PHR, Parhofer KG, Young D, Tessereau D, Bateman J, Quinn C, Schonfeld G: Apolipoprotein B100 production is decreased in subjects heterozygous for truncations of apolipoprotein B. Arterioscler Thromb 15: 71–80, 1995

    Google Scholar 

  11. Smithies O, Maeda N: Gene targeting approaches to complex genetic diseases: Atherosclerosis and essential hypertension. Proc Natl Acad Sci USA 92: 5266–5272, 1995

    PubMed  Google Scholar 

  12. Homanics GE, Smith TJ, Zhang SH, Lee D, Young SG, Maeda N: Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice. Proc Natl Acad Sci USA 90: 2389–2393, 1993

    PubMed  Google Scholar 

  13. Toth L, Smith TJ, Jones C, deSilva HV, Smithies O, Maeda N: Two distinct apolipoprotein B alleles in mice generated by a single 'in-out' targeting. Gene 178: 161–168, 1996

    PubMed  Google Scholar 

  14. Farese RV, Ruland SL, Flynn LM, Stokowski RP, Young SG: Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci USA 92: 1774–1778, 1995

    PubMed  Google Scholar 

  15. Kim E, Cham CM, Veniant MM, Ambroziak P, Young SG: Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the apoB gene. J Clin Invest 101:1468–1477, 1998

    Google Scholar 

  16. Pullinger CR, North JD, Teng B-B, Rifici VA, Ronhild de Brito, Scott J: The apolipoprotein B gene is constitutively expressed in HepG2 cells: Regulation of secretion by oleic acid, albumin, insulin and measurement of the mRNA half-life. J Lipid Res 30: 1065–1077, 1989

    PubMed  Google Scholar 

  17. Moberly JB, Cole TG, Alpers DH, Schonfeld G: Oleic acid stimulation of apolipoprotein B secretion from HepG2 and Caco2 cells occurs posttranscriptionally. Biochim Biophys Acta 1042: 70–80, 1990

    PubMed  Google Scholar 

  18. Dixon JL, Furukawa S, Ginsberg HN: Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from HepG2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem 266: 5080–5086, 1991

    PubMed  Google Scholar 

  19. Davis RA, Thrift RN, Wu CC, Howell KE: Apolipoprotein B is both integrated into and translocated across the endoplasmic reticulum membrane. Evidence for two functionally distinct pools. J Biol Chem 265: 10005–10011, 1990

    PubMed  Google Scholar 

  20. Selby SL, Yao Z: Levels of apolipoprotein B mRNA has an important effect on the synthesis and secretion of apolipoprotein B-containing lipoproteins. Studies on the transfected hepatoma cell lines expressing recombinant human apolipoprotein B. Arterioscler Throm Vas Biol 15: 1900–1910, 1995

    Google Scholar 

  21. Urlaub G, Mitchell PJ, Ciuda CJ, Chasin LA: Nonsense mutation in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol 9: 2868–2880, 1989

    PubMed  Google Scholar 

  22. Mashima Y, Murakami A, Weleber RG, Kennaway NG, Clarke L, Shiono T, Inana G: Nonsense codon mutations of the ornithine aminotransferase gene with decreased levels of mutant mRNA in gyrate atrophy. Am J Hum Genet 51: 81–91, 1992

    PubMed  Google Scholar 

  23. Frangi D, Cicardi M, Sica A, Colotta F, Agostoni A, Davus AE: Nonsense mutations affect C1 inhibitor messenger RNA levels in patients with type I hereditary angioneurotic edema. J Clin Invest 88: 755–759, 1991

    PubMed  Google Scholar 

  24. Longo N, Langley SD, Griffin LD, Elsas LJ II: Reduced mRNA and a nonsense mutation in the insulin receptor gene produce heritable severe insulin resistance. Am J Hum Genet 50: 998–1007, 1992

    PubMed  Google Scholar 

  25. Lehrman MA, Schneider WJ, Brown MS, Davis C, Elhammer A, Russell DW, Goldstein JL: The Labanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum. J Biol Chem 262: 401–410, 1987

    PubMed  Google Scholar 

  26. Liebhaber SA, Coleman MB, Adams JG, Cash FE, Steinberg MH: Molecular basis for nondeletion alpha-thalassemia in American blacks. Alpha 2<116GAG......UAG>. J Clin Invest 80: 154–159, 1987

    PubMed  Google Scholar 

  27. Srivastava RAK, Jiao S, Tang J, Pfleger BA, Kitchens RT, Schonfeld G: In vivo regulation of LDL receptor and apoB gene expressions in inbred strains of mice by dietary fatty acids and cholesterol. Biochim. Biophys. Acta 1086: 29–43, 1991

    PubMed  Google Scholar 

  28. Srivastava RAK, Tang J, Krul ES, Pfleger BA, Kitchens RT, Schonfeld G: Dietary fatty acids and cholesterol differ in their effects on the in vivo regulation of apoAI and AII gene expressions. Biochim Biophys Acta 1125: 251–261, 1992

    PubMed  Google Scholar 

  29. Srivastava RAK, Srivastava N, Schonfeld G: Expression of low density lipoprotein receptor, apolipoprotein AI, AII, and AIV in various rat organs utilizing an efficient and rapid method for RNA isolation. Biochem Intern 27: 85–95, 1992

    Google Scholar 

  30. Srivastava RAK, Baumann D, Schonfeld G: In vivo regulation of low density lipoprotein receptor by estrogen differs at the posttranscriptional levels in rat and mouse. Eur J Biochem 216: 527–538, 1993

    PubMed  Google Scholar 

  31. Srivastava RAK, Schonfeld G: Use of riboprobes for Northern blotting analysis. Bio/Tech 11: 584–587, 1991

    Google Scholar 

  32. Srivastava RAK, Pfleger BA, Schonfeld G: Expression of LDL receptor, apolipoprotein B, AI, and AIV genes in various organs of mouse by a novel solution hybridization assay. Biochim Biophys Acta 1090: 95–101, 1991

    PubMed  Google Scholar 

  33. Srivastava RAK: Increased apoB100 mRNA in inbred strains of mice by estrogen is caused by decreased RNA editing protein mRNA. Biochem Biophys Res Commun 212: 381–387, 1995

    PubMed  Google Scholar 

  34. Williams DL, Dawson PA: Immunochemical measurements of apolipoprotein synthesis in cell and organ culture. Meth Enzymol 128: 254–271, 1986

    Google Scholar 

  35. Li X, Catalina F, Grundy SM, Patel S: Method to measure apolipoprotein B48 and B100 secretion rates in an individual mouse: Evidence for a very rapid turnover of VLDL and preferential removal of B48-relative to B100-containing lipoproteins. J Lipid Res 37: 210–220, 1996

    PubMed  Google Scholar 

  36. Srivastava RAK, Srivastava N, Maurizio M, Cefalu AB, Schonfeld G: Molecular bases of low production rates of apolipoprotein B-100 and truncated apoB-82 in a mutant HepG2 cell line generated by targeted modification of the apolipoprotein B gene. J Lipid Res 40: 901–912, 1999

    PubMed  Google Scholar 

  37. Krul ES, Kinoshita M, Talmud P, Humphries SE, Turner S, Goldberg AC, Cook K, Boerwinkle E, Schonfeld G: Two distinct truncated apolipoprotein B species in a kindred with hypobetalipoproteinemia. Arteriosclerosis 9: 856–868, 1989

    PubMed  Google Scholar 

  38. Farese RV Jr, Garg A, Pierotti VR, Vega GL, Young SG: A truncated species of apolipoprotein B, B83, associated with hypobetalipoproteinemia. J Lipid Res 33: 569–577, 1992

    PubMed  Google Scholar 

  39. Krul ES, Parhofer KG, Barrett PHR, Wagner RD, Schonfeld G: ApoB-75, a truncation of apolipoprotein B associated with familial hypobetalipoproteinemia: Genetic and kinetic studies. J Lipid Res 33: 1037–1050, 1992

    PubMed  Google Scholar 

  40. Farese RV Jr, Veniant MM, Cham CM, Flynn LM, Pierotti V, Loring JF, Traber M, Ruland S, Stokowski RS, Huszar D, Young GG: Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proc Natl Acad Sci USA 93: 6393–6398, 1996

    PubMed  Google Scholar 

  41. Parhofer KG, Daugherty A, Kinoshita M, Schonfeld G: Enhanced clearance from plasma of low density lipoproteins containing a truncated apolipoprotein, apoB-89. J Lipid Res 32: 1311–1323, 1990

    Google Scholar 

  42. Adeli K, Wettesten M, Asp L, Mohammadi A, Macri J, Olofsson S: Intracellular assembly and degradation of apolipoprotein B-100 containing lipoproteins in digitonin-permeabilized HepG2 cells. J Biol Chem 272: 5031–5039, 1997

    PubMed  Google Scholar 

  43. Cartwright IJ, Habbachi A, Higgins JA: Apolipoprotein B is channeled into different compartments in hepatocytes. Biochem Soc Trans 22: 205, 1994

    Google Scholar 

  44. Krul ES, Tang J, Kettler TS, Clouse RE, Schonfeld G: Lengths of truncated forms of apolipoprotein B (apoB) determine their intestinal production. Biochem Biophys Res Commun 189: 1069–1076, 1992

    PubMed  Google Scholar 

  45. Davis R, Prewett A, Thompson J, Chan P, Borchardt R, Gallaher W: Intrahepatic assembly of very low density lipoproteins: Immunologic characterization of apolipoprotein B in lipoproteins and hepatic membrane fractions and its intracellular distribution. J Lipid Res 30: 1185–1196, 1989

    PubMed  Google Scholar 

  46. Macri J, Adeli K: Conformational changes in apolipoprotein B modulate intracellular assembly and degradation of apoB-containing lipoprotein particles in HepG2 cells. Arterio Thromb Vasc Biol 17: 2982–2994, 1997

    Google Scholar 

  47. Du EZ, Kurth J, Wang S, Humiston P, Davis RA: Proteolysis-coupled secretion of the N-terminus of apolipoprotein B. Characterization of a transient, translocation arrested intermediate. J Biol Chem, 269: 24169–24176, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R.A.K., Toth, L., Srivastava, N. et al. Regulation of the apolipoprotein B in heterozygous hypobeta-lipoproteinemic knock-out mice expressing truncated apoB, B81. Low production and enhanced clearance of apoB cause low levels of apoB. Mol Cell Biochem 202, 37–46 (1999). https://doi.org/10.1023/A:1007030531478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007030531478

Navigation