Skip to main content
Log in

Attenuation of macrophage apoptosis by the cAMP-signalling system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies revealed that expression and activation of cyclooxygenase-2 (Cox-2) conveyed a protective principle in murine macrophages, thus attenuating pro-apoptotic actions of chemotherapeutic agents or programmed cell death as a result of massive nitric oxide (NO) generation. Expression of Cox-2 was achieved by treatment of cells with lipopolysaccharide/interferon-γ or nontoxic doses of NO releasing agents. We reasoned E-type prostanoid formation, and in turn an intracellular cAMP increase as the underlying protective mechanism. To prove our hypothesis, we analyzed the effects of lipophilic cAMP-analogs on NO, cisplatin, or etoposide induced apoptosis in RAW 264.7 macrophages. Selected apoptotic parameters comprised DNA fragmentation (diphenylamine assay), annexin V staining of phosphatidylserine, caspase activity (quantitated by the cleavage of a fluorogenic caspase-3-like substrate Ac-DEVD-AMC), and mitochondrial membrane depolarisation (ΔΨ). Western blots detected accumulation of the tumor suppressor protein p53, relocation of cytochrome c to the cytosol, and expression of the anti-apoptotic protein Bcl-xL. Prestimulation with lipophilic cAMP-analogs attenuated apoptosis with the notion that cell death parameters were basically absent. To verify gene induction by cAMP in association with protection we established activation of cAMP response element binding protein (CREB) by gel-shift analysis and moreover, treated macrophages with oligonucleotides containing a cAMP-responsive element (CRE) in order to scavenge CREB. Decoy oligonucleotides, but not control oligonucleotides, attenuated cAMP-evoked protection and reestablished pro-apoptotic parameters. We conclude that gene induction by cAMP protects macrophages towards apoptosis that occurs as a result of excessive NO formation or addition of chemotherapeutica. Attenuating programmed cell death by the cAMP-signaling system may be found in association with Cox-2 expression and tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eastman A, Rigas JR: Modulation of apoptosis signaling pathways and cell cycle regulation. Semin Oncol 26: 7–16, 1999

    Google Scholar 

  2. Hinds PW, Weinberg RA: Tumor suppressor genes. Curr Opin Genet Dev 4: 135–141, 1994

    Google Scholar 

  3. Hale AJ, Smith CA, Sutherland LC, Stoneman VEA, Longthorne VL, Culhane AC et al.: Apoptosis: Molecular regulation of cell death. Eur J Biochem 236: 1–26, 1996

    Google Scholar 

  4. Lee JM, Bernstein A: Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev 14: 149–161, 1995

    Google Scholar 

  5. Ridgway WM, Weiner HL, Fathman CG: Regulation of autoimmune response. Curr Opin Immunol 6: 946–955, 1994

    Google Scholar 

  6. Fadeel B, Orrenius S, Zhivotovsky B: Apoptosis in human disease: A new skin for the old ceremony? Biochem Biophys Res Commun 266: 699–717, 1999

    Google Scholar 

  7. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH: Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415–1420, 1994

    Google Scholar 

  8. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM et al.: Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182: 1545–1556, 1995

    Google Scholar 

  9. Nicholson DW: Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff 6: 1028–1042, 1999

    Google Scholar 

  10. Petit PX, O'Connor JE, Grunwald D, Brown SC: Analysis of the membrane potential of rat-and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem 194: 389–397, 1990

    Google Scholar 

  11. Okada S, Zhang H, Hatano M, Tokuhisa T: A physiologic role of BclxL induced in activated macrophages. J Immunol 160: 2590–2596, 1998

    Google Scholar 

  12. Brockhaus F, Brü ne B: U937 apoptotic cell death by nitric oxide: Bcl-2 downregulation and caspase activation. Exp Cell Res 238: 33–41, 1998

    Google Scholar 

  13. May P, May E: Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 18: 7621–7636, 1999

    Google Scholar 

  14. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR: The p53 network. J Biol Chem 273: 1–4, 1998

    Google Scholar 

  15. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323–331, 1997

    Google Scholar 

  16. Watson RW, Redmond HP, Bouchier-Hayes D: Role of endotoxin in mononuclear phagocyte-mediated inflammatory responses. J Leukoc Biol 56: 95–103, 1994

    Google Scholar 

  17. Lander HM: An essential role for free radicals and derived species in signal transduction. FASEB J 11: 118–124, 1997

    Google Scholar 

  18. James PE, Grinberg OY, Swartz HM: Superoxide production by phagocytosing macrophages in relation to the intracellular distribution of oxygen. J Leukoc Biol 64: 78–84, 1998

    Google Scholar 

  19. Herschman HR, Reddy ST, Xie W: Function and regulation of prostaglandin synthase-2. Adv Exp Med Biol 407: 61–66, 1997

    Google Scholar 

  20. Hempel SL, Monick MM, He B, Yano T, Hunninghake GW: Synthesis of prostaglandin H synthase-2 by human alveolar macrophages in response to lipopolysaccharide is inhibited by decreased cell oxidant tone. J Biol Chem 269: 32979–32984, 1994

    Google Scholar 

  21. Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H et al.: Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267: 25934–25938, 1992

    Google Scholar 

  22. O'Sullivan MG, Huggins EMJ, Meade EA, DeWitt DL, McCall CE: Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 187: 1123–1127, 1992

    Google Scholar 

  23. Williams CS, Mann M, DuBois RN: The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18: 7908–7916, 1999

    Google Scholar 

  24. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA: Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem 274: 22903–22906, 1999

    Google Scholar 

  25. Smith WL, Garavito RM, DeWitt DL: Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J Biol Chem 271: 33157–33160, 1996

    Google Scholar 

  26. Coleman RA, Smith WL, Narumiya S: International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205–229, 1994

    Google Scholar 

  27. Brü ne B, von Knethen A, Sandau KB: Nitric oxide (NO): An effector of apoptosis. Cell Death Diff 6: 969–975, 1999

    Google Scholar 

  28. von Knethen A, Brü ne B: Cyclooxygenase-2: an essential regulator of NO-mediated apoptosis. FASEB J 11: 887–895, 1997

    Google Scholar 

  29. von Knethen A, Callsen D, Brü ne B: NF-kappaB and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW 264.7 macrophages. Mol Biol Cell 10: 361–372, 1999

    Google Scholar 

  30. von Knethen A, Callsen D, Brü ne B: Superoxide attenuates macrophage apoptosis by NF-kappaB and AP-1 activation that promotes cyclooxygenase-2 expression. J Immunol 163: 2858–2866, 1999

    Google Scholar 

  31. von Knethen A, Brockhaus F, Kleiter I, Brü ne B: NO-Evoked macrophage apoptosis is attenuated by cAMP-induced gene expression. Mol Med 5: 672–684, 1999

    Google Scholar 

  32. von Knethen A, Lotero A, Brü ne B: Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMPinduced gene expression. Oncogene 17: 387–394, 1998

    Google Scholar 

  33. McConkey DJ, Nicotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S: Glucorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys 269: 365–370, 1989

    Google Scholar 

  34. Burton K: A study of the conditions and mechanisms of the diphenylamine reaction for the estimation of deoxyribonucleic acid. Biochem J 62: 315–323, 1956

    Google Scholar 

  35. Schoonbroodt S, Legrand Poels S, Best Belpomme M, Piette J: Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J 321: 777–785, 1997

    Google Scholar 

  36. Camandola S, Leonarduzzi G, Musso T, Varesio L, Carini R, Scavazza A et al.: Nuclear factor kappa B is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem Biophys Res Commun 229: 643–647, 1996

    Google Scholar 

  37. Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM: Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev 2: 1529–1538, 1988

    Google Scholar 

  38. Hart TW: Some observations concerning the S-nitroso and S-phenylsulphonyl derivates of L-cysteine and glutathione. Tetrahedron Lett 26: 2013–2016, 1985

    Google Scholar 

  39. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183–1188, 1994

    Google Scholar 

  40. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S: Expression of prostaglandin G/H synthase-1 and-2 protein in human colon cancer. Cancer Res 55: 2556–2559, 1995

    Google Scholar 

  41. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K et al.: Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res 55: 3785–3789, 1995

    Google Scholar 

  42. Levy GN: Prostaglandin H synthases, nonsteroidal antiinflammatory drugs, and colon cancer. FASEB J 11: 234–247, 1997

    Google Scholar 

  43. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E et al.: Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87: 803–809, 1996

    Google Scholar 

  44. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J et al.: Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99: 2254–2259, 1997

    Google Scholar 

  45. Lo CJ, Fu M, Lo FR, Cryer HG: Cyclooxygenase 2 (COX-2) gene activation is regulated by cyclic adenosine monophosphate. Shock 13: 41–45, 2000

    Google Scholar 

  46. Zhang F, Warskulat U, Wettstein M, Schreiber R, Henninger HP, Decker K et al.: Hyperosmolarity stimulates prostaglandin synthesis and cyclooxygenase-2 expression in activated rat liver macrophages. Biochem J 312: 135–143, 1995

    Google Scholar 

  47. Vial D, Arbibe L, Havet N, Dumarey C, Vargaftig B, Touqui L: Downregulation by prostaglandins of type-II phospholipase A2 expression in guinea-pig alveolar macrophages: A possible involvement of cAMP. Biochem J 330: 89–94, 1998

    Google Scholar 

  48. Kawase T, Orikasa M, Suzuki A: Phorbol ester-like action of staurosporine on the cAMP response to prostaglandin E2 in two macrophagelike cell lines at distinct differentiation stages. Cell Signal 4: 479–485, 1992

    Google Scholar 

  49. Fladmark KE, Gjertsen BT, Doskeland SO, Vintermyr OK: Fas/APO-1(CD95)-induced apoptosis of primary hepatocytes is inhibited by cAMP. Biochem Biophys Res Commun 232: 20–25, 1997

    Google Scholar 

  50. Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ: Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3. J Biol Chem 273: 6736–6743, 1998

    Google Scholar 

  51. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD: Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286: 2358–2361, 1999

    Google Scholar 

  52. Torgersen KM, Vaage JT, Levy FO, Hansson V, Rolstad B, Tasken K: Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J Biol Chem 272: 5495–5500, 1997

    Google Scholar 

  53. Walker BA, Rocchini C, Boone RH, Ip S, Jacobson MA: Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158: 2926–2931, 1997

    Google Scholar 

  54. Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C et al.: Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun 243: 821–826, 1998

    Google Scholar 

  55. Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M: Analysis of a cAMP-responsive activator reveals a two-component mechansim for transcriptional induction via signal-dependent factors. Genes Dev 11: 738–747, 1997

    Google Scholar 

  56. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M et al.: Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370: 226–229, 1994

    Google Scholar 

  57. Scheid MP, Foltz IN, Young PR, Schrader JW, Duronio V: Ceramide and cyclic adenosine monophosphate (cAMP) induce cAMP response element binding protein phosphorylation via distinct signaling pathways while having opposite effects on myeloid cell survival. Blood 93: 217–225, 1999

    Google Scholar 

  58. Yang YM, Dolan LR, Ronai Z: Expression of dominant negative CREB reduces resistance to radiation of human melanoma cells. Oncogene 12: 2223–2233, 1996

    Google Scholar 

  59. Messmer UK, Reed UK, Brü ne B: Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J Biol Chem 271: 20192–20197, 1996

    Google Scholar 

  60. Brockhaus F, Brü ne B: p53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene 18: 6403–6410, 1999

    Google Scholar 

  61. Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273: 32377–32379, 1998

    Google Scholar 

  62. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M: CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 273: 24884–24890, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Knethen, A., Brüne, B. Attenuation of macrophage apoptosis by the cAMP-signalling system. Mol Cell Biochem 212, 35–43 (2000). https://doi.org/10.1023/A:1007124203607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007124203607

Navigation