Skip to main content
Log in

Changes in glutamate-cycle enzyme mRNA levels in a rat model of hepatic encephalopathy

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

To detect possible changes in the regulation of glutamate/γ-aminobutyric acid (GABA) enzymes at the level of gene expression in a thioacetamide-induced rat model of acute hepatic encephalopathy, we have examined changes in the mRNAs of four glutamate/GABA enzymes by quantitative RNA blot hybridization analysis. Such changes could reflect cell adaptation to excess ammonia or some other associated metabolic stress. The mRNA levels of glutamate dehydrogenase (GDH) decreased similarly in three different brain regions, whereas those of glutamine synthetase (GS) and glutaminase (GA) increased. The mRNA levels of glutamate decarboxylase (GAD) were unchanged. The results indicate that some effect of liver damage, presumably hyperammonemia, affected the expression of some, but not all, genes associated with ammonia and glutamate metabolism in the brain. This adaptation of gene expression to secondary effects of ammonia on brain amino acid neurotransmitter metabolism or brain energy metabolism could play a role in the physiological changes observed in hepatic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, J., Hilgier, W., Lazarewicz, J. W., Rafalowska, U., and Wysmyk-Cybula, U. (1987). Astrocytes in acute hepatic encephalopathy: Metabolic proberties and transport functions. In Norenberg, M. D., Hertz, L., and Schousboe, A. (eds.),The Biochemical Pathology of Astrocytes, Alan R. Liss, New York (in press).

    Google Scholar 

  • Banner, C., Silverman, S., Thomas, J. W., Lampel, K. A., Vitkovic, L., Huie, D., and Wenthold, R. J. (1987). Isolation of a human brain cDNA for glutamate dehydrogenase.J. Neurochem. 49: 246–252.

    Google Scholar 

  • Benjamin, A. M., and Quastel, J. H. (1975). Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: A possible role of ammonia in brain function.J. Neurochem. 25: 197–206.

    Google Scholar 

  • Berl, S., Takagaki, G., Clarke, D. D., and Waelsch, H. (1962). Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver.J. Biol. Chem. 237: 2562–2569.

    Google Scholar 

  • Berl, S., Nicklas, W. J., and Clarke, D. D., (1978). Glial cells and metabolic compartmentation. In Schoffeniels, E., Franck, G., Towers, D. B., and Hertz, L. (eds.),Dynamic Properties of Glial Cells, Pergamon Press, New York, pp. 143–149.

    Google Scholar 

  • Butterworth, R. F., and Giguere, J. F. (1986). Cerebral amino acids in portal-systemic encephalopathy: Lack of evidence for altered GABA function.Metab. Brain Dis. 1: 221–228.

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18: 5294–5299.

    Google Scholar 

  • Colombo, J. P., Bachmann, C., Peheim, E., and Beruter, J. (1977). Enzymes of ammonia detoxification after portacaval shunt in the rat. II. Enzymes of glutamate metabolism.Enzyme 22: 399–406.

    Google Scholar 

  • Cooper, A. J. L., and Plum, F. (1987). Biochemistry and physiology of brain ammonia.Physiol. Rev. 67: 440–518.

    Google Scholar 

  • Cooper, A. J. L., McDonald, J. M., Gelbard, A. S., Gledhill, R. F., and Duffy, T. E. (1979). The metabolic fate of13N-labeled ammonia in rat brain.J. Biol. Chem. 254: 4982–4992.

    Google Scholar 

  • Cooper, A. J. L., Vergara, F., and Duffy, T. E. (1983). Cerebral glutamine synthetase. In Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.),Glutamine, Glutamate, and GABA in the Central Nervous System, Alan R. Liss, New York, pp. 77–93.

    Google Scholar 

  • Cooper, A. J. L., Mora, S. N., Cruz, N. F., and Gelbard, A. S. (1985). Cerebral ammonia metabolism in hyperammonemic rats.J. Neurochem. 44: 1716–1723.

    Google Scholar 

  • Glowinski, J., and Iverson, L. L. (1966). Regional studies of catecholamines in the rat brain. I. The disposition of [3H]-norepinephrine, [3H]-dopamine, and [3H]-DOPA in various regions of the brain.J. Neurochem. 13: 655–669.

    Google Scholar 

  • Harley, C. B. (1987). Hybridization of oligo-d(T) to RNA on nitrocellulose.Gene Anal. Techn. 4: 17–22.

    Google Scholar 

  • Hilgier, W., Albrecht, J., and Krasnicka, Z. (1983). Thioacetamide induced hepatic encephalopathy in the rat. I. Preliminary morphological and biochemical observations.Neuropatol. Polska 21: 487–494.

    Google Scholar 

  • Hilgier, W., Zitting, A., and Albrecht, J. (1985). The brain octopamine and phenylethanolamine content in rats in thioacetamide-induced hepatogenic encephalopathy.Acta Neurol. Scand. 71: 195–198.

    Google Scholar 

  • Hindfelt, B., Plum, F., and Duffy, T. E. (1977). Effect of acute ammonia intoxication of cerebral metabolism in rats with portacaval shunts.J. Clin. Invest. 59: 386–396.

    Google Scholar 

  • Jones, D. B., Mullen, K. D., Roessle, M., Maynard, T., and Jones, E. A. (1987). Hepatic encephalopathy: Application of visual evoked responses to test hypotheses of its pathogenesis in rats.J. Hepatol. 4: 118–126.

    Google Scholar 

  • Jones, E. A., and Schafer, D. F. (1986). Hepatic encephalopathy: A neurochemical disorder. InProgress in Liver Diseases, Vol. VIII, Grune and Stratton, New York, pp. 525–540.

    Google Scholar 

  • Kaufman, D. L., McGinnis, J. F., Krieger, N. R., and Tobin, A. J. (1986). Brain glutamate decarboxylase cloned in lambda gt 11: Fusion protein produces gamma-amino butyric acid.Science 232: 1138–1140.

    Google Scholar 

  • Lavoie, J., Giguere, J.-F., Layrargues, G. P., and Butterworth, R. F. (1987). Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy.J. Neurochem. 49: 692–697.

    Google Scholar 

  • Matheson, D. F., and Van den Berg, C. J. (1975). Ammonia and brain glutamine: Inhibition of glutamine degradation by ammonia.Biochim. Soc. Trans. 3: 525–528.

    Google Scholar 

  • Norenberg, M. D., and Martinez-Hernandez, A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain.Brain Res. 161: 303–310.

    Google Scholar 

  • Plum, F., and Hindfelt, B. (1976). The neurological complications of liver disease. Vinken, P. J., and Bruyn, G. W. (eds.),Handbook of Clinical Neurology. Metabolic and Deficiency Diseases of the Central Nervous System, Elsevier/North-Holland, Amsterdam, Vol. 27, pp. 349–377.

    Google Scholar 

  • Raabe, W., and Lin, S. (1985). Pathophysiology of ammonia intoxication.Exp. Neurol. 87: 519–532.

    Google Scholar 

  • Sanders, P. G., and Wilson, R. H. (1984). Amplification and cloning of the Chinese hampster glutamine synthetase gene.EMBO J. 3: 65–71.

    Google Scholar 

  • Subbalakshmi, G. Y. C. V., and Murthy, C. R. K. (1983). Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.Neurochem. Int. 5: 593–597.

    Google Scholar 

  • Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose,Proc. Natl. Acad. Sci. 77: 5201–5205.

    Google Scholar 

  • Van den Berg, C. J., and Garfinkel, D. (1971). A simulation study of brain compartments.Biochem. J. 123: 211.

    Google Scholar 

  • Wenthold, R. J., and Altschuler, R. A. (1983). Immunocytochemistry of aspartate amino transferase and glutaminase. In Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.),Glutamine, Glutamate, and GABA in the Central Nervous System, Alan R. Liss, New York, pp. 33–50.

    Google Scholar 

  • Wenthold, R. J., Altschuler, R. A., Skaggs, K. K., and Reeks, K. A. (1987). Immunocytochemical characterization of glutamate dehydrogenase in the cerebellum of the rat.J. Neurochem. 48: 636–643.

    Google Scholar 

  • Zieve, L. (1987). Pathogenesis of hepatic encephalopathy.Metab. Brain Dis. 2: 147–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J.W., Banner, C., Whitman, J. et al. Changes in glutamate-cycle enzyme mRNA levels in a rat model of hepatic encephalopathy. Metab Brain Dis 3, 81–90 (1988). https://doi.org/10.1007/BF01001011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01001011

Key words

Navigation