Skip to main content
Log in

Amelioration of Experimental Cisplatin and Paclitaxel Neuropathy with Glutamate

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

A major toxic effect of the chemotherapeutic agents paclitaxel and cisplatin is peripheral neuropathy. We report the use of a rat model of cytotoxic neuropathy to evaluate the role of glutamate as a possible neuroprotectant for these two drugs. Neuropathy was manifest as gait disturbance in 100% of paclitaxel treated animals after 2 weeks and 100% of cisplatin treated animals after 8 weeks. Significant elevations of mean tail-flick threshold, a measure of sensory impairment, were observed in animals treated with both cytotoxics. Impaired rota-rod performance was observed in both light and dark with paclitaxel, indicating motor neuropathy. There was a trend towards impairment in the dark for cisplatin, suggesting proprioceptive loss. In cytotoxic treated animals supplemented with oral sodium glutamate (approx. 500 mg/kg/day in drinking water) from 24 h before chemotherapy, there was a significant delay in time to onset of gait disturbance allowing significantly higher mean doses to be tolerated. Mean tail-flick and rota-rod scores were unchanged from baseline for both drugs. Glutamate therefore protected against both sensory and motor neuropathy. Similar doses of glutamate did not impair the cytotoxic efficacy of paclitaxel or cisplatin against a transplantable rat mammary adenocarcinoma grown subcutaneously in rats. Our findings suggest that glutamate warrants clinical trial as a neuroprotectant in patients receiving paclitaxel or cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cersosimo RJ: Cisplatin neurotoxicity. Cancer Treat Rev 16: 195-211, 1989

    PubMed  Google Scholar 

  2. Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC: Neurotoxicity of taxol. Monogr Natl Cancer Inst 107-115, 1993

  3. Cavaletti G, Bogliun G, Marzorati L, Zincone A, Marzola M, Colombo N, Tredici G: Peripheral neurotoxicity of taxol in patients previously treated with cisplatin. Cancer 75: 1141-1150, 1995

    PubMed  Google Scholar 

  4. Chaudhry V, Rowinsky EK, Sartorius SE, Donehower RC, Cornblath DR: Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann Neurol 35: 304-311, 1994

    PubMed  Google Scholar 

  5. Wasserheit C, Frazein A, Oratz R, Sorich J, Downey A, Hochster H, Chachoua A, Wernz J, Zeleniuchjacquotte A, Blum R, Speyer J: Phase II trial of paclitaxel and cisplatin in women with advanced breast cancer-an active regimen with limiting neurotoxicity. J Clin Oncol 14: 1993-1999, 1996

    PubMed  Google Scholar 

  6. Connelly E, Markman M, Kennedy A, Webster K, Kuip B, Peterson G, Belinson J: Paclitaxel delivered as a 3-hr infusion with cisplatin in patients with gynecologic cancers: unexpected incidence of neurotoxicity. Gynecol Oncol 62: 166-168, 1996

    PubMed  Google Scholar 

  7. Rowinsky EK, Donehower RC: Paclitaxel (taxol). N Engl J Med 332: 1004-1014, 1995

    PubMed  Google Scholar 

  8. Rowinsky EK, Chaudhry V, Forastiere AA, Sartorius SE, Ettinger DS, Grochow LB, Lubejko BG, Cornblath DR, Donehower RC: Phase I and pharmacologic study of paclitaxel and cisplatin with granulocyte colony-stimulating factor: neuromuscular toxicity is dose-limiting. J Clin Oncol 11: 2010-2020, 1993

    PubMed  Google Scholar 

  9. Derry WB, Wilson L, Jordan MA: Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34: 2203-2211, 1995

    PubMed  Google Scholar 

  10. Freilich RI, Balmaceda C, Seidman AD, Rubin M, DeAngelis LM: Motor neuropathy due to docetaxel and paclitaxel. Nutr Rev 47: 115-118, 1996

    Google Scholar 

  11. Gregg RW, Molepo JM, Monpetit VJ, Mikael NZ, Redmond D, Gadia M, Stewart DJ: Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10: 795-803, 1992

    PubMed  Google Scholar 

  12. Barajon I, Bersani M, Quartu M, Del Fiacco M, Cavaletti G, Holst JJ, Tredici G: Neuropeptides and morphological changes in cisplatin-induced dorsal root ganglion neuropathy. Experimental Neurology 138: 93-104, 1996

    PubMed  Google Scholar 

  13. Malgrange B, Delree P, Rigo JM, Baron H, Moonen G: Image analysis of neuritic regeneration by adult rat dorsal root ganglion neurons in culture: quantification of the neurotoxicity of anticancer agents and of its prevention by nerve growth factor or basic fibroblast growth factor but not brain-derived neurotrophic factor or neurotrophin-3. J Neurosci Methods 53: 111-122, 1994

    PubMed  Google Scholar 

  14. Krarup-Hansen A, Fugleholm K, Helweg Larsen S, Hauge EN, Schmalbruch H, Trojaborg W, Krarup C: Examination of distal involvement in cisplatin-induced neuropathy in man. Anelectrophysiological and histological study with particular reference to touch receptor function. Brain 116: 1017-1041, 1993

    PubMed  Google Scholar 

  15. Hansen SW: Late-effects after treatment for germ-cell cancer with cisplatin, vinblastine, and bleomycin. Dan Med Bull 39: 391-399, 1992

    PubMed  Google Scholar 

  16. Cavaletti G, Bogliun G, Marzorati L, Tredici G, Colombo N, Parma G, Miceli MD: Long-term peripheral neurotoxicity of cisplatin in patients with successfully treated epithelial ovarian cancer. Anticancer Res 14: 1287-1292, 1994

    PubMed  Google Scholar 

  17. Schmalbruch H, Krarup C: Animal models of neuropathies. Baillieres Clinical Neurology 5: 77-105, 1996

    Google Scholar 

  18. Gerritsen van der Hoop R, Vecht CJ, van der Burg ME, Elderson A, BoogerdW, Heimans JJ, VriesEP, van Houwelingen JC, Jennekens FG, Gispen WH et al.: Prevention of cisplatin neurotoxicity with an ACTH(4-9) analogue in patients with ovarian cancer. N Engl J Med 322: 89-94, 1990

    PubMed  Google Scholar 

  19. Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J: Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14: 2101-2112, 1996

    PubMed  Google Scholar 

  20. Pirovano C, Balzarini A, Bohm S, Oriana S, Spatti GB, Zunino F: Peripheral neurotoxicity following high-dose cisplatin with glutathione: clinical and neurophysiological assessment. Tumori 78: 253-257, 1992

    PubMed  Google Scholar 

  21. Apfel SC, Arezzo JC, Lipson L, Kessler JA: Nerve growth factor prevents experimental cisplatin neuropathy. Ann Neurol 31: 76-80, 1992

    PubMed  Google Scholar 

  22. Apfel SC, Lipton RB, Arezzo JC, Kessler JA: Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 29: 87-90, 1991

    PubMed  Google Scholar 

  23. Gao WQ, Dybdal N, Shinsky N, Murnane A, Schmelzer C, Siegel M, Keller G, Hefti F, Phillips HS, Winslow JW: Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann Neurol 38: 30-37, 1995

    PubMed  Google Scholar 

  24. Twentyman PR: Modification byWR2721 of the response to chemotherapy of tumours and normal tissues in the mouse. Br J Cancer 47: 57-63, 1983

    PubMed  Google Scholar 

  25. Kelland LR: New platinum antitumor complexes. Crit Rev Oncol-Hemat 15: 191-219, 1993

    Google Scholar 

  26. Jackson DV, Jr., Rosenbaum DL, Carlisle LJ, Long TR, Wells HB, Spurr CL: Glutamic acid modification of vincristine toxicity. Cancer Biochem Biophys 7: 245-252, 1984

    PubMed  Google Scholar 

  27. Jackson DV, Wells HB, Atkins IN, Zekan PJ, White DR, Richards F, 2d, Cruz JM, Muss HB: Amelioration of vincristine neurotoxicity by glutamic acid. Am J Med 84: 1016-1022, 1988

    PubMed  Google Scholar 

  28. Johnson IS, Wright HF, Svoboda GS, Vlantis J: Antitumor principles derived from vinca Rosea Linn. I. Vincaleukoblastine and Leurosine. Cancer Res 20: 1016-1022, 1960

    PubMed  Google Scholar 

  29. Boyle FM, Wheeler HR, Shenfield GM: Glutamate ameliorates experimental vincristine neuropathy. J Pharm Exp Ther 279: 410-415, 1996

    Google Scholar 

  30. Boyle FM, Monk R, Wheeler H, Shenfield G: The experimental neuroprotectant glutamate does not inhibit cytotoxicity of vinca alkaloids, cisplatin or paclitaxel. Proc AACR 38: 607, 1997 (Abstract)

    Google Scholar 

  31. Dellon, AL: Somatosensory testing and rehabilitation. American Occupational Therapy Assoc, Bethesda, 1997

    Google Scholar 

  32. Coyle P, Rofe AM, Bourgeois CS, Conyers RA: Biochemical manifestations of a rat mammary adenocarcinoma-producing cachexia: in vivo and in vitro studies. Immunol Cell Biol 68: 147-153, 1990

    PubMed  Google Scholar 

  33. Euhus DM, Hudd C, LaRegina MC, Johnson FE: Tumor measurement in the nude mouse. J Surg Oncol 31: 229-234, 1986

    PubMed  Google Scholar 

  34. Sandier SG, Tobin W, Henderson ES: Vincristine-induced neuropathy. A clinical study of fifty leukemic patients. Nutr Rev 19: 367-374, 1969

    Google Scholar 

  35. Cavaletti E, Montaguti P, Oggioni N, Caveletti G, Tredici G: Peripheral neurotoxicity of intravenous Taxol in rats. Proc AACR 37: 375, 1996 (Abstract)

    Google Scholar 

  36. de Koning P, Neijt JP, Jennekens FG, Gispen WH: Evaluation of cis-diamminedichloroplatinum (II) (cisplatin) neurotoxicity in rats. Toxicol Appl Pharmacol 89: 81-87, 1987

    PubMed  Google Scholar 

  37. Cavaletti G, Marzorati L, Bogliun G, Colombo N, Marzola M, Pittelli MR, Tredici G: Cisplatin-induced peripheral neurotoxicity is dependent on total-dose intensity and single-dose intensity. Cancer 69: 203-207, 1992

    PubMed  Google Scholar 

  38. Cavaletti G, Cascinu S, Venturino P, Tedeschi M, Tredici G: Neuroprotectant drugs in cisplatin neurotoxicity. Anticancer Res 16: 3149-3159, 1996

    PubMed  Google Scholar 

  39. Journey U, Burdman J, Whaley A: Electron microscopic study of spinal ganglia from vincristine-treated mice. J Natl Cancer Inst 43: 603-619, 1969

    PubMed  Google Scholar 

  40. Wisniewski H, Shelanski ML, Terry RD: Effects of mitotic spindle inhibitors on neurotubules and neuro filaments in anterior horn cells. J Cell Biol 38: 224-229, 1968

    PubMed  Google Scholar 

  41. Boyle FM, Davey RA, Bell DR, Wheeler HR, Friedlander ML: Glutamic acid does not inhibit in vitro cytotoxicity of vinca alkaloids. Proc AACR 33: 424, 1992 (Abstract)

    Google Scholar 

  42. Lipton SA, Rosenberg PA: Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613-622, 1994

    PubMed  Google Scholar 

  43. Pearce IA, Cambray-Deakin MA, Burgoyne RD: Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223: 143-147, 1987

    PubMed  Google Scholar 

  44. Jones PG, Rosser SJ, BullochAGM: Glutamate enhancement of neurite outgrowth in Helisoma neurons. Soc Neurosci Abs 12: 509, 1986 (Abstract)

    Google Scholar 

  45. Lipton SA, Kater SB: Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12: 265-270, 1989

    PubMed  Google Scholar 

  46. Lovinger DM, Weight FF: Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors. Neurosci Lett 94: 314-320, 1988

    PubMed  Google Scholar 

  47. Daoud SS, Clements MK, Small CL: Polymerase chain reaction analysis of cisplatin-induced mitochondrial DNA damage in human ovarian carcinoma cells. Anticancer Drugs 6: 405-412, 1995

    PubMed  Google Scholar 

  48. Gispen WH, Hamers FP: Calcium and neuronal dysfunction in peripheral nervous system. Ann NY Acad Sci 747: 419-430, 1994

    PubMed  Google Scholar 

  49. Werth JL, Zhou B, Nutter LM, Thayer SA: 2′,3′-Dideoxycytidine alters calcium buffering in cultured dorsal root ganglion neurons. Mol Pharmacol 45: 1119-1124, 1994

    PubMed  Google Scholar 

  50. Bading H, Segal MM, Sucher NJ, Dudek H, Lipton SA, Greenberg ME: N-methyl-D-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Neuroscience 64: 653-664, 1995

    PubMed  Google Scholar 

  51. Moskowitz PF, Smith R, Pickett J, Frankfurter A, Oblinger MM: Expression of the class III beta-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res 34: 129-134, 1993

    PubMed  Google Scholar 

  52. Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, MacDonald TL, Sundberg RJ, Rebhun LI, Frankfurter A: Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 88: 4685-4689, 1991

    PubMed  Google Scholar 

  53. Esmaeli-Azad B, McCarty JH, Feinstein SC: Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 107: 869-879, 1994

    PubMed  Google Scholar 

  54. Pirollet F, Margolis RL, Job D: Ca(2+)-calmodulin regulated effectors of microtubule stability in neuronal tissues. Biochim Biophys Acta 1160: 113-119, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, F.M., Wheeler, H.R. & Shenfield, G.M. Amelioration of Experimental Cisplatin and Paclitaxel Neuropathy with Glutamate. J Neurooncol 41, 107–116 (1999). https://doi.org/10.1023/A:1006124917643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006124917643

Navigation