Skip to main content
Log in

M3 muscarinic receptors on murine HSDM1C1 cells: Further functional, regulatory, and receptor binding studies

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present studies, the pharmacology and regulation of the functional muscarinic receptors on HSDM1C1 cells were probed using phosphoinositide (PI) turnover assays. In addition, the receptor binding of the putative M3-selective radioligand, [3H]4-DAMP, to cell homogenates was characterized. Carbachol (EC50=9 μM), (+)muscarine (EC50=4.5 μM) and cis-dioxolane (EC5=0.72 μM) were full agonists which stimulated PI turnover by 13.3±1.0 fold above basal values. The potencies of numerous agonists in this assay system were relatively similar to their affinities in receptor binding assays. Exposure of HSDM1C1 cells to 10 nM–10 μM muscarine during the last 24h of [3H]myo-inositol-labeling resulted in a concentration-dependent reduction in the cisdioxolane affinity and maximal PI response induced by subsequent treatment with cis-dioxolane. pertussis toxin (5–2000 ng/ml) caused a partial reduction in the cis-dioxolane-induced PI turnover. Likewise, exposure of the HSDM1C1 cells to an active phorbol ester (TPA) resulted in a partial inhibition of the cis-dioxolane-induced (100 μM) PI turnover. The half-maximal effect of TPA was produced at 1.8±0.3 nM. [3H]4-DAMP binding to cell homogenates was of high affinity (Kd=0.19±0.04 nM) and moderate capacity (Bmax=201±22 fmol/mg protein). The pharmacological specificity (4-DAMP>p-FHHSiD>dicyclomine>pirenzepine>methoctramine>AFDX-116 >gallamine) resembled that for [3H]NMS binding and correlated well with that observed for inhibition of PI turnover. These studies further support the identification of M3 receptors on HSDM1C1 cells. These receptors have been shown to be influenced by pertussis toxin, an active phorbol ester and to exhibit desensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathanson, N. M. 1987. Molecular properties of the muscarinic acetylcholine receptor. Ann. Rev. Neurosci. 10:195–236.

    Google Scholar 

  2. Bonner, T., Buckley, N. J., Young, A. C., and Brann, M. R. 1987. Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532.

    Google Scholar 

  3. Hulme, E. C., Birdsall, N. J. M., and Buckley, N. J. 1990. Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 30: 633–673.

    Google Scholar 

  4. Berridge, M. J., and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.

    Google Scholar 

  5. Richards, M. H. 1991. Pharmacology and second messenger interactions of cloned muscarinic receptors. Biochem. Pharmacol. 42:1645–1650.

    Google Scholar 

  6. Ransom, J. T., Cherwinski, R. E., Delmendo, R. E., Sharif, N. A., and Eglen, R. M. 1991. Characterization of the m4 muscarinic receptor Ca2+-response in a subclone of PC-12 cells by single cell flow cytometry. J. Biol. Chem. 266:11738–11745.

    Google Scholar 

  7. Sharif, N. A., and Whiting, R. L. 1990. Stimulation of inositol phosphate production in clonal HSDM1C1 cells by endothelins and sarafotoxin. Biochem. Pharmacol. 40:1929–1931.

    Google Scholar 

  8. Sharif, N. A., and Whiting, R. L. 1993. The neuropeptide bradykinin stimulates phosphoinositide turnover in HSDM1C1 cells: B2-antagonist-sensitive responses and receptor binding studies. Neurochem. Res. 18:1313–1320.

    Google Scholar 

  9. Eglen, R. M., Sharif, N. A., and To, Z. P. 1993. Muscarinic M3 receptors mediate total inositol phosphates accumulation in murine HSDM1C1 fibrosarcoma cells. Eur. J. Pharmacol. (Mol. Pharm. Section) 244:49–55.

    Google Scholar 

  10. Arunlakshan, O., and Schild, H. O. 1959. Some quantitative uses of drug antagonists. Brit. J. Pharmacol. 14:48–58.

    Google Scholar 

  11. Orellana, S. A., Solski, P. A., and Brown, J. H. 1985. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J. Biol. Chem. 260:5236–5240.

    Google Scholar 

  12. Delmendo, R. E., Michel, A. D., and Whiting, R. L. 1989. Affinity of muscarinic antagonists for three putative muscarinic receptor binding sites. Brit. J. Pharmacol. 96:457–464.

    Google Scholar 

  13. Michel, A. D., Delmendo, R. E., Stefanich, E., and Whiting, R. L. 1989. Binding characteristics of the muscarinic subtype of the NG108-15 cell line. Naunyn Schmiedeberg's Arch. Pharmacol. 340:62–67.

    Google Scholar 

  14. Michel, A. D., Stefanich, E., and Whiting, R. L. 1989. Direct labeling of rat M3 muscarinic receptors by [3H]4-DAMP. Eur. J. Pharmacol. 166:459–466.

    Google Scholar 

  15. Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerized approach for the characterization of ligand binding systems. Anal. Biochem. 107:220–239.

    Google Scholar 

  16. Becherer, P.R., Mertz, L. F., and Baenziger, N. L. 1982. Regulation of prostaglandin synthesis mediated by thrombin and B2 bradykinin receptors in a fibrosarcoma cell line. Cell 30:243–251.

    Google Scholar 

  17. Fisher, S. K., and Heacock, A. M. 1988. A putative M3 muscarinic cholinergic receptor of high molecular weight couples to phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. J. Neurochem. 50:984–987.

    Google Scholar 

  18. Kunysz, E. L., Michel, A. D., Whiting, R. L., and Woods, K. 1989. The human astrocytoma cell line 1321N1 contains M2-glandular type muscarinic receptors linked to phosphoinositide tumover. Brit. J. Pharmacol. 96:271–278.

    Google Scholar 

  19. Kunysz, E. A., Michel, A. D., and Whiting, R. L. 1988. Functional and direct binding studies using subtype selective muscarinic receptor antagonists. Brit. J. Pharmacol. 93:491–500.

    Google Scholar 

  20. Eglen, R. M., Michel, A. D., Montgomery, W. W., Kunysz, E. A., Machado, C. A., and Whiting, R. L. 1990. The interaction of paraflourohexahydrosialadifenidol at muscarinic receptors in vitro. Brit. J. Pharmacol. 99:637–642.

    Google Scholar 

  21. Doods, M. N., Mathy, M. J., Davidesko, D., Van Charldorp, K. J., De Jonge, A., and Van Zweiten, P. A. 1987. Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J. Pharmacol. Expt. Ther. 242:257–262.

    Google Scholar 

  22. Lamberecht, G., Feifel, R., Forth, B., Stohmann, C., Tack, R. and Mutschler, E. 1988. p-Fluoro-hexahydro-sila-difenidol: the first M-selective muscarinic antagonist. Eur. J. Pharmacol. 152:193–194.

    Google Scholar 

  23. Ford, A. P. D. W., Levine, W. B., Baxter, G. S., Harris, G., Eglen, R. M., and Whiting, R. L. 1991. Pharmacological, biochemical and molecular characterization of muscarinic receptors in the guinea pig ileum: a multidisciplinary approach. Mol. Neuropharmacol. 1:117–121.

    Google Scholar 

  24. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1980. Pirenzepine distinguishes between subclasses of muscarinic receptors. Nature 283:90–92.

    Google Scholar 

  25. Michel, A. D., and Whiting, R. L. 1988. Methoctramine, a polymethylene tetramine, differentiates three subtypes of muscarinic receptor in direct binding studies. Eur. J. Pharmacol. 145:61–66.

    Google Scholar 

  26. Lazareno, S., Kendall, D. A., and Nahorski, S. R. 1985. Pirenzepine indicates heterogeneity of muscarinic receptors linked to cerebral inositol phospholipid metabolism. Neuropharmacol. 24:593–595.

    Google Scholar 

  27. Kopp, R., Lambrecht, G., Mutschler, E., Moser, U., Tacke, R., and Pfeifer, A. 1989. Human HT-29 colon carcinoma cells contain muscarinic M3 receptors coupled to phosphoinositide metabolism. Eur. J. Pharmacol. 172:397–405.

    Google Scholar 

  28. Akiyamma, K., Vickery, T. W., Watson, M., Roeske, W. R., Reisine, T. D., Smith, T. L., and Yamamura, H. I. 1986. Muscarinic cholinergic ligand binding to intact mouse pituitary tumor cells (AtT-20/D16-16) coupling to two biochemical effectors: adenylate cyclase and phosphatidylinositol turnover. J. Pharmacol. Expt. Ther. 236:653–661.

    Google Scholar 

  29. Mei, L., Lai, J., Roeske, W. R., Fraser, C. M., Venter, J. C., and Yamamura, H. I. 1989. Pharmacological characterization of the M1 muscarinic receptors expressed in murine fibroblast B82 cells. J. Pharmacol. Expt. Ther. 248:661–669.

    Google Scholar 

  30. Whiting, R. L., Ford, A. P. D. W., Baxter, G. S., Harris, G. S. Sharif, N. A., and Eglen, R. M. 1991. Pharmacological and biochemical analysis of muscarinic receptors in guinea pig ileum in vitro. Brit. J. Pharmacol. 102:19p.

    Google Scholar 

  31. Serra, M., Mei, L., Roeske, W. R., Watson, M., and Yamamura, H. I. 1988. The intact neuroblastoma cell (SH-SY5Y) exhibits high affinity [3H]pirenzepine binding associated with hydrolysis of phosphatidylinositols. J. Neurochem. 50:1513–1521.

    Google Scholar 

  32. Ui, M. 1984. Islet-activating protein, pertussis toxin- a probe for functions of inhibitory nucleotide regulatory component of adenylate cyclase. Trends Pharmacol. Sci. 5:277–279.

    Google Scholar 

  33. Nishizuka, Y. 1984. The role of protein kinase C in cell-surface receptor signal transduction and tumor production. Nature 308:693–698.

    Google Scholar 

  34. Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature 334:661–665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, N.A., To, Z.P., Wong, K.H. et al. M3 muscarinic receptors on murine HSDM1C1 cells: Further functional, regulatory, and receptor binding studies. Neurochem Res 20, 61–68 (1995). https://doi.org/10.1007/BF00995154

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995154

Key Words

Navigation