Skip to main content
Log in

Neurotoxic Potential of Three Structural Analogs of β-N-oxalyl-α,β-Diaminopropanoic Acid (β-ODAP)

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lathyrism is a non-progressive motor neuron disease produced by consumption of the excitatory amino acid, 3-N-oxalyl-L-2,3-diaminopropanoic acid (β-ODAP). To learn more about the mechanisms underlying Lathyrism three structural analogs of β-ODAP were synthesized. Carboxymethyl-α,β-diaminopropanoic acid (CMDAP) evoked inward currents which were antagonized by APV (30 μM), but not by CNQX (10 μM). N-acetyl-α,β-diaminopropanoic acid (ADAP) evoked no detectable ionic currents but potentiated N-methyl-D-aspartate (NMDA)-activated currents. The potentiation of NMDA currents by ADAP was blocked by 7-chlorokynurenic acid. Carboxymethylcysteine (CMC) did not activate any detectable ionic currents. None of the three β-ODAP analogs produced visible symptoms of toxicity in day old chicks when administered for 2–3 consecutive days. Ligand binding studies demonstrated that all the three compounds were effective to in displacing [3H]glutamate. The maximum inhibition was 92% for CMDAP, 61% for ADAP, 65% for CMC and 99% for β-ODAP. These data indicate that analogs of β-ODAP may interact with glutamate receptors without producing neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Spencer, P. S., and Schaumburg, H. H. 1983. Lathyrism: A neurotoxic disease. Neurobehav Tox Terat 5:625–629.

    Google Scholar 

  2. Ludolph, A. C., Hugon, J., Dwivedi, M. P., Schaumburg, H. H., and Spencer, P. S. 1987. Studies on the aetiology and pathogenesis of motor neuron diseases 1. Lathyrism: clinical findings in established cases. Brain 110:149–165.

    PubMed  Google Scholar 

  3. Spencer, P. S., Ludolph, A., Dwivedi, M. P., Roy, D. N., Hugon, J., and Schaumburg, H. H. 1986. Lathyrism: Evidence for role of the neuroexcitatory amino acid BOAA. Lancet i:1066–1067.

    Google Scholar 

  4. Haimanot, R. T., Kidane, Y., Wuhib, E., Kalissa, A., Alemu, T., Zein, Z. A., and Spencer, P. S. 1990. Lathyrism in rural northwestern Ethiopia: A highly prevalent neurotoxic disorder. Int J Epidemiol 19:664–672.

    PubMed  Google Scholar 

  5. Jayaraman, K. S. 1989. Neurolathyrism remains a threat in India. Nature 339:495.

    PubMed  Google Scholar 

  6. Haque, A., Hossain, M., Khan, J. K, Kuo, Y. H., Lambein, F. and De Reuck, J. 1994. New findings and symptomatic treatment for neurolathyrism, a motor neuron disease occurring in North West Bangladesh. Paraplegia 32:193–195.

    PubMed  Google Scholar 

  7. Cohn, D. F., and Streifler, M. 1981. Human neurolathyrism, a follow-up study of 200 patients Part I: Clinical investigation. Arch Suiss Neurol Neuroch Psych 128:151–156.

    Google Scholar 

  8. Cohn, D. F., and Streifler, M. 1981. Human neurolathyrism, a follow-up study Part II: Special investigations. Arch Suiss Neurol Neuroch Psych 128:157–163.

    Google Scholar 

  9. Hugon, J., Ludolph, A., Roy, D. N., Schaumburg H. H., and Spencer, P. S. 1988. Studies on the eitology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiologic features of pyramidal dysfunction in macaques fed Lathyrus sativus and IDPN. Neurology 38:435–442.

    PubMed  Google Scholar 

  10. Ross, S. M., Seelig, M., and Spencer, P. S. 1987. Specific antagonism of excitotoxic action of “uncommon” amino acids assayed in organotypic mouse cortical cultures. Brain Res 425:120–127.

    PubMed  Google Scholar 

  11. Nunn, P. B., Seelig, M., and Spencer, P. S. 1986. Acute neuronal changes induced in cortex/cord by “uncommon” plant amino acids. Neuropathol Appl Neurobiol 4:348.

    Google Scholar 

  12. Rao, S. L. N., Adiga, P. R., and Sarma, P.S. 1964. The isolation and characterization of β-N-oxalyl-L-α,β-diaminopropionic acid: a neurotoxin from the seeds of Lathyrus sativus. Biochemistry 3: 432–436.

    Google Scholar 

  13. Zeevalk, G. D., and Nicklas, W. J. 1989. Acute excitotoxicity in chick retina caused by the unusual amino acids BOAA and BMAA: Effects of MK-801 and kynurenate. Neurosci Lett 102:284–290.

    PubMed  Google Scholar 

  14. Bridges, R. J., Kadri, M. M., Monaghan, D. T., Nunn, P. B., Watkins, J. C., and Cotman, C. W. 1988. Inhibition of [3H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding by the excitotoxin β-N-oxalyl-L-α, β-diaminopropionic acid. Eur J Pharmacol 145: 357–359.

    PubMed  Google Scholar 

  15. MacDonald, J. F., and Morris, M. E. 1984. Lathyrus excitotoxin: mechanism of neuronal excitation by L-2-oxalylamino-3-amino-and L-3-oxalylamino-2-amino-propionic acid. Exp Brain Res 57:158–166.

    PubMed  Google Scholar 

  16. Pearson, S., and Nunn, P. B. 1981. The neurolathyrogen, β-N-oxalyl-L-α,β-diaminopropionic acid, is a potent agonist at glutamate preferring receptors in the frog spinal cord. Brain Res 206: 178–182.

    PubMed  Google Scholar 

  17. Nunn, P. B., Seelig, M., Zagoren, J. C., and Spencer, P. S. 1987. Stereospecific acute neuronotoxicity of “uncommon” plant acids linked to human motor-system disease. Brain Res 410: 375–379.

    PubMed  Google Scholar 

  18. Ross, S. M., Roy, D. N., and Spencer, P. S. 1989. β-N-Oxalylamino-L-alanine action on glutamate receptors. J Neurochem 53:710–715.

    PubMed  Google Scholar 

  19. Ross, S. M., and Spencer, P. S. 1987. Specific antagonism of behavioral action of “uncommon” amino acids linked to motor-system diseases. Synapse 1:248–253.

    PubMed  Google Scholar 

  20. Koh, J., Goldberg, M. P., Hartley, D. M., and Choi, D. W. 1990. Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci 10:693–705.

    PubMed  Google Scholar 

  21. Rao, S. L. N. 1978. Entry of β-N-oxalyl-L-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin into the central nervous system of the adult rat, chick and the rhesus monkey. J Neurochem 30:1467–1470.

    PubMed  Google Scholar 

  22. Mehta, T., Parker, A. J., Cusick, P. K., Zarghami, N. S., and Haskell, B. E. 1983. The lathyrus sativus neurotoxin: resistance of the squirrel monkey to prolonged oral high doses. Toxicol Appl Pharmacol 69:480–484.

    PubMed  Google Scholar 

  23. Shasi Vardhan, K., Pratap Rudra, M. P., and Rao, S. L. N. 1997. Inhibition of tyrosine aminotransferase by β-N-oxalyl-L-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin. J. Neurochem. 68: 2477–2484.

    PubMed  Google Scholar 

  24. Monaghan, D. T., and Cotman, C. W. 1986. Identification and properties of N-methyl-D-aspartate receptors in rat brain synaptic plasma membranes. Proc Natl Acad Sci USA 83:7532–7536.

    PubMed  Google Scholar 

  25. Allen, C. N., Omelchenko, I., Ross, S. M., and Spencer, P. 1995. The neurotoxin, β-N-methylamino-L-alanine (BMAA) interacts with the strychnine-insensitive glycine modulatory site of the N-methyl-D-aspartate receptor. Neuropharmacology 34:651–658.

    PubMed  Google Scholar 

  26. Allen, C. N., Spencer, P. S., Carpenter, D. O. 1993. β-N-methylamino-L-alanine in the presence of bicarbonate is an agonist at non-N-methyl-D-aspartate-type receptors. Neuroscience 54:567–574.

    PubMed  Google Scholar 

  27. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100.

    PubMed  Google Scholar 

  28. Coyle, J. T. 1987. Kainic acid: insights into excitatory mechanisms causing selective neuronal degeneration. Ciba Found Symp 126: 186–203.

    PubMed  Google Scholar 

  29. Lehmann, J., Kerkany, J. W., Schaeffer, P., and Coyle, J. T. 1995. Dissociation between the excitatory and “excitotoxic” effects of quinolinic acid analogs on the striatal cholinergic interneurons. J Pharmacol Exp Ther 232:873–882.

    Google Scholar 

  30. Künig, G., Hartmann, J., Niedermeyer, B., Deckert, J., Ransmayr, G., Heinsen, H., Beckmann, H., and Riederer, P. 1994. Excitotoxins L-β-oxalyl-amino-alanine (L-BOAA) and 3,4,6-trihydroxyphe-nylalanine (6-OH-DOPA) inhibit [3H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding in human hippocampus. Neurosci Lett 169:219–222.

    PubMed  Google Scholar 

  31. Kunig, G., Hartmann, J., Niedermeyer, B., Deckert, J., Ransmayr, G., Heinsen, H., Beckmann, H., and Riederer, P. 1994. Exctitotoxins L-β-oxalyl-amino-alanine (L-BOAA) and 3,4,6-trihydroxyphenylalanine (6-OH-DOPA) inhibit 3Hα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding in human hippocampus. Neurosci. Lett. 169:219–222.

    PubMed  Google Scholar 

  32. Jain, R. K., Junaid, M. A., and Rao, S. L. N. 1998. Receptor in teractions of β-N-oxalyl-L-α,β-diaminopropionic acid, the Lathyrus sativus putative excitotoxin, with synaptic membranes. Neurochem. Res. 23:1191–1196.

    PubMed  Google Scholar 

  33. Jacob, E., Patel, A. J., and Ramakrishnan, C. V. 1967. Effect of neurotoxin from seeds of Lathyrus sativus on glutamate metabolism in chick brain. J Neurochem 14:1091–1094.

    PubMed  Google Scholar 

  34. Mehta, T., Hsu, A-F., and Haskell, B. E. 1972. Specificity of the neurotoxin from Lathyrus sativus as an amino acid antagonist. Biochemistry 11:4053–4063.

    PubMed  Google Scholar 

  35. Rao, S. L. N., and Sarma, P. S. 1964. Neurotoxic properties of N-substituted oxamic acids. Ind J Biochem 3:57.

    Google Scholar 

  36. Benveniste, M., and Mayer, M. L. 1991. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59:560–573.

    PubMed  Google Scholar 

  37. Clements, J. D., and Westbrook, G. L. 1991. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7:605–613.

    PubMed  Google Scholar 

  38. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L. 1986. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522. (Abstract)

    PubMed  Google Scholar 

  39. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J., and Barker, J. L. 1987. Agonist-and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J Neurosci 7:3230–3244.

    PubMed  Google Scholar 

  40. Nicotera, P., Bellomo, G., and Orrenius, S. 1992. Calcium mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470.

    PubMed  Google Scholar 

  41. Zinkand, W.C., Thompson, C., Salama, A.I., and Patel, J. 1992. Excitatory amino acid-evoked calcium influx and calcium-dependent neurotoxicity in rat cortical cultures. Ann NY Acad Sci 648:355–357.

    PubMed  Google Scholar 

  42. Choi, D. W. 1992. Excitotoxic cell death. J Neurobiol 23: 1261–1276.

    PubMed  Google Scholar 

  43. Snell, L. D., Morter, R. S., and Johnson, K. M. 1988. Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. Eur J Pharmacol 156:105–110.

    PubMed  Google Scholar 

  44. Bigge, C. F. 1993. Structural requirements for the development of potent N-methyl-D-aspartic acid (NMDA) receptor antagonists. Biochem Pharmacol 45:1547–1561.

    PubMed  Google Scholar 

  45. McBain, C. J., Kleckner, N. W., Wyrick S., and Dingledine R. 1989. Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36:556–565.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles N. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omelchenko, I.A., Jain, R.K., Junaid, M.A. et al. Neurotoxic Potential of Three Structural Analogs of β-N-oxalyl-α,β-Diaminopropanoic Acid (β-ODAP). Neurochem Res 24, 791–797 (1999). https://doi.org/10.1023/A:1020791815848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020791815848

Navigation