Skip to main content
Log in

Role of Heat Shock Proteins in the Effect of NMDA and KCl on Cerebellar Granule Cells Survival

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebellar granule cells (CGC) die apoptotically after five days in culture (DIV) at physiological concentrations of potassium (5 mM; K5). When CGC are depolarized (K25) or treated with NMDA (150 μM) cell survival is increased. CGC changed from K25 to K5 die after 24–48 h. It is known that heat shock protein (HSP) may protect from cell death. Here, we found that cells in K5 showed an increase in HSP-70 levels after 3 DIV. Similarly, in cells changed from K25 to K5, HSP-70 levels were increased after 6 h. Neither NMDA nor K25 treatment affected HSP-70 levels from 2–7 DIV. Ethanol or thermal stress induced HSP-70, but cell survival was not affected in K5 medium. These results suggest that HSP, particularly HSP-70, are not involved in the mechanisms by which NMDA and KCl promote cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Davies, A. M. 1988. Role of neurotrophic factors in development. Trends Genetics 4:139–143.

    Google Scholar 

  2. Oppenheim, R. W. 1991. Cell death during development of the nervous system. Annu. Rev. Neursci. 14:453–501.

    Google Scholar 

  3. Balàzs, R., Jorgensen, O. S., and Hack, N. 1988. N-methyl-Daspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27:437–451.

    Google Scholar 

  4. Balàzs, R., Hack, N., and Jorgensen O. S. 1988b. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett. 87:80–86.

    Google Scholar 

  5. Morán, J., and Patel, A. J. 1989. Effect of potassium depolarization on phosphate-activated glutaminase activity in primary cultures of cerebellar granule neurons and astroglial cells during development. Dev. Brain. Res. 46:97–105.

    Google Scholar 

  6. Morán, J., and Patel, A. J. 1989. Stimulation of the N-methyl-D-aspartate receptor promotes the biochemical differentiation of cerebellar granule neurons and not astrocytes. Brain Res. 486: 15–25.

    Google Scholar 

  7. Didier, M., Roux, P., Piechaczyk, M., Mangeat, P., Devilliers, G., Bockaert, J., and Pin, J. P. 1992. Long-term expression of the c-fos protein during in vitro differentiation in cerebellar granule cells induced by potassium or NMDA. Brain Res. Mol. Brain Res. 12:249–258.

    Google Scholar 

  8. Sakurai, H., Kurusu, R., Sano, K., Tsuchiya, T., and Tsuda, M. 1992. Stimulation of cultured cerebellar granule cells via glutamate receptor induces TRE-and CRE-binding activities mediated by common DNA-binding complexes. J. Neurochem. 59:2067–2075.

    Google Scholar 

  9. Bulleit, R. F., Cui, H., Wang, J. C., and Lin, X. 1994. NMDA receptor activation in differentiating cerebellar cell cultures regulates the expression of a new Pou gene, CNS-1. J. Neurosci. 14:1584–1595.

    Google Scholar 

  10. Grayson, D. R., Szekely, A. M., and Costa, E. 1990. Glutamate-induced gene expression in primary cerebellar neurons. Pages 185-202, in Guidotti A (ed): Neurotoxicity of Excitatory Amino Acids, Raven Press, New York.

    Google Scholar 

  11. Balàzs, R. 1992. NMDA treatment and K?-induced depolarization selectively promote the expression of an NMDA-preferring class of the ionotropic glutamate receptors in cerebellar granule neurons. Neurosci. Lett. 137:109–113.

    Google Scholar 

  12. Morán, J., and Rivera-Gaxiola, M. 1992. Effect of potassium and NMDA on the aspartate aminotransferase activity in cultured cerebellar granule cells. J. Neurosci. Res. 33:239–247.

    Google Scholar 

  13. D'Mello, S. R., Galli, C., Ciotti, T., and Calissano, P. 1993. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. USA. 90:10989–10993.

    Google Scholar 

  14. Morán, J., Dominguez, G., and Alavez, S. 1996. NMDA receptor activation and apoptotic death of cultured cerebellar granule neurons. Bol. Estud. Med. Biol. 44:49–51.

    Google Scholar 

  15. Galli, C., Meuccio, O., Scorziello, A., Werge, T. M., Calissano, P., and Schettin, G. 1995. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolina and IGF-1 trough distinct mechanism of action: the involvement of intracellular calcium and RNA synthesis. J. Neurosci. 15:1172–1179.

    Google Scholar 

  16. Morán, J., Itho, T., Reddy, U. R., Chen, M., Alnemri, E., and Pleasure, D. 1999. Caspase-3 expression by cerebellar granule neurons is regulated by calcium and cyclic AMP. J. Neurochem. 73:568–577.

    Google Scholar 

  17. Morimoto, R. I., Sarges, K. D., and Abravaya, K. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267 (31):21987–21990.

    Google Scholar 

  18. Miller, E., Raese, J. D., and Morrison-Bogorad M 1991. Expression of heat shock protein 70 messengers RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment. J. Neurochem. 56:2060–2071.

    Google Scholar 

  19. González, M. F., Shiraishi, K., Hisanaga, K., Sagar, S. M., Mandabach, M., and Sharp, F. R. 1989. Heat shock proteins as markers of neural injury. Mol. Brain Res. 6:93–100.

    Google Scholar 

  20. Vass, K., Berger, M. L., Novak, T. S. J., Welch, W. J., and Lassman, H. 1989. Induction of stress protein HSP-70 in nerve cells after status epilepticus in the rat. Neurosci. Lett. 100: 259–264.

    Google Scholar 

  21. Simon. R., Cho, H., Gwinn, R., and Lowenstein, D. 1991. The temporal profile of 72 kd heat shock protein expression following global ischemia. J. Neurosci. 11:881–889.

    Google Scholar 

  22. Rodorf, G., Koroshetz, W. J., and Bonventre, J. V. 1991. Heat shock protects cultured neurons from glutamate toxicity. Neuron. 7:1043–1051.

    Google Scholar 

  23. Kavakov, A. E., and Gabai, V. L. 1994. Heat shock proteins maintain the viability of ATP-deprived cells: what is the mechanism?. Trends In Cell. Biol. 4:193–195.

    Google Scholar 

  24. Alois, F., Ciotti, M. T., and Levi, G. 1985. Characterization of GABAergic neurons in cerebellar primary cultures and selective neurotoxicity of a serum fraction. J. Neurosci. 5: 2001–2008.

    Google Scholar 

  25. Gallo, G., Ciotti, M. T., Aloisi, F., and Levi, G. 1986. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium. J. Neurosci. Res. 15:289–301.

    Google Scholar 

  26. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  27. Laemmli, U. K. 1970. Cleavage of structural proteins during the assemble of the head of bacteriophage. Nature. 227:680–685.

    Google Scholar 

  28. Mossman, T. 1983. Rapid colorimetric assay of cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63.

    Google Scholar 

  29. Neuhaus-Steimetz, U., Xu, C., Fracella, F., Oberheitmann, B., Richter-Landsberg, C., and Resing, L. 1994. Heat shock response and cytotoxicity in C6 rat glioma cells: Structure-activity relationship of different alcohols. Mol. Pharmacol. 45:36–41.

    Google Scholar 

  30. Gallo, V., Kingsbury, A., Balàzs, R., and Jorgensen, O. S. 1987. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7:2203–2213.

    Google Scholar 

  31. Yellon, D. M., and Lachman, D. S. 1980. Stress proteins in myocardial protection. J. Mol. Cell. Cardiol. 24:113–124.

    Google Scholar 

  32. Mailhos, C., Howard, M. K., and Latchman, D. S. 1993. Heat shock protects neuronal cells from programmed cell death by apoptosis. Neuroscience. 55:621–627.

    Google Scholar 

  33. Barbe, M., Tytell, M., Gover, D., and Welch, W. 1988. Hyperthermia protects against light damage in the rat retina. Science. 241:1817–1820.

    Google Scholar 

  34. Chopp. M., Chen, H., Ho, K. L., Dereski, M. O., Brown, E., Hetzel, F. W., and Welch, K. M. 1989. Transient hyperthemia protects against subsequent forebrain ischemic cell damage in the rat. Neurology. 39:1396–1398.

    Google Scholar 

  35. Lowenstein, D. H., Chart, P. H., and Miles, M. F. 1991. The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron. 7: 1053–1060.

    Google Scholar 

  36. Lindquist, S. 1988. The heat shock proteins. Annu. Rev. Genet. 22:631–677.

    Google Scholar 

  37. Mailhos, C., Howard, M. K., and Latchman, D. S. 1994. Heat shock proteins hsp90 and hsp70 protect neuronal cells from thermal stress but not from programmed cell death. J. Neurochem. 63(5):1787–1795.

    Google Scholar 

  38. Cumming, D. V., Heads, R. J., Brand, N. J., Yellon, D. M., and Latchman, D. S. 1996. The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocites. Basic. Res. Cardiol. 91(1):79–85.

    Google Scholar 

  39. Freyaldenhoven, T. E., and Ali, S. F. 1997. Role of heat shock proteins in MPTP-induced neurotoxicity. Ann-N-Y-Acad-Sci. (15) 825:167–178.

  40. Mehlen, P., Shulze-Osthoff, K., and Arrigo, A. P. 1996. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J. Biol. Chem. 271(28):16510–4.

    Google Scholar 

  41. Gordon, S. A., Hoffman, R. A., Simmons, R. L., and Ford, H. R. 1997. Induction of the heat shock protein 70 protects thymocytes against radiation-induced apoptosis. Arch. Surg. 132(12): 1277–1282.

    Google Scholar 

  42. Chant, I. D., Rose, P. E., and Morris, A. G. 1996. Susceptibility of AML cells to in vitro apoptosis correlates with heat shock protein 70 (hsp 70) expression. Br. J. Haematol. 93(4):898–902.

    Google Scholar 

  43. Edwards, M. J., Walsh, D. A. and Li Z 1997. Hyperthermia, teratogenesis and the heat shock response in mammalian embryos in culture. Int. J. Dev. Biol. 41(2):345–358.

    Google Scholar 

  44. Imuta, N., Ogawa, S., Maeda, Y., Kuwabara, K., Hori, O., Ueda, H., Yanagihara, T., and Tohyama, M. 1998. Induction of 72-kD Inducible Heat shock protein (HSP-72) in cultured rat astrocytes after energy depletion. J. Neurochem. 70(2):550–557.

    Google Scholar 

  45. Katayama, S., Shuntoh, H., Matsuyama, S., and Tanaka, C. 1994. Effect of heat shock on intracellular calcium mobilization in neuroblastoma X glioma hybrid cells. J. Neurochem. 62(6):2292–2299.

    Google Scholar 

  46. Schultz, J. B., Weller, M., and Klockgether, T. 1996. Potassium deprivation-induced apoptosis in cerebellar granule neurons:a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity and reactive oxygen species. J. Neurosci. 16:4696–4706.

    Google Scholar 

  47. Buzzard, K. A., Giaccia, A. J., Killender, M., and Anderson, R. L. 1998. Heat shock protein-72 modulates pathways of stressinduced apoptosis. J. Biol. Chem. 273 (27):17147–17153.

    Google Scholar 

  48. Alavez, S., Gutierrez-Kobeh, L., and Morán, J. 1996. Characterization of the activation of glutaminase induced by N-Methyl-DAspartate and potassium in cerebellar granule cells. J. Neurosci. Res. 45:637–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alavez, S., Pedroza, D. & Morán, J. Role of Heat Shock Proteins in the Effect of NMDA and KCl on Cerebellar Granule Cells Survival. Neurochem Res 25, 341–347 (2000). https://doi.org/10.1023/A:1007584802989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007584802989

Navigation