Skip to main content
Log in

Oxygen-18 tracer study of the passive thermal oxidation of silicon

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This work focuses on the thermal oxidation of silicon near 1273 K using the double-tracer oxidation method. The results confirm that oxidation occurs by the transport of electrically neutral non-network oxygen through the interstitial space of the vitreous silica (ν-SiO2) scale. Simultaneously, self- (or isotopic-) diffusion occurs in the network, resulting in characteristic isotopic fraction distributions near the gas-scale interface. The self-diffusion coefficients calculated from these profiles agree with those reported for tracer diffusion in ν-SiO2, and the diffusion coefficient calculated from the scale growth is consistent with reported O2 permeation data. An important parameter that describes the double-oxidation behavior is the ratio of the value of Δ/√(D nt′),where Δ is the scale thickness grown during the second oxidation, Dn is the network self-diffusion coefficient for oxygen, and t′ is the time of the second oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. J. Jorgenson,J. Chem. Phys. 37, 1874 (1962).

    Google Scholar 

  2. B. E. Deal and A. S. Grove,J. Appl. Phys. 36, 3770 (1965).

    Google Scholar 

  3. E. A. Irene,J. Electrochem. Soc. 121, 1613 (1974).

    Google Scholar 

  4. D. O. Rayleigh,J. Electrochem. Soc. 113, 782 (1966).

    Google Scholar 

  5. W. A. Tiller,J. Electrochem. Soc. 127, 619 (1980);127, 625 (1980).

    Google Scholar 

  6. F. Rochet, B. Agius, and S. Rigo,J. Electrochem. Soc. 131, 914 (1984).

    Google Scholar 

  7. E. Rosencher, A. Straboni, S. Rigo, and G. Amsel,Phys. Lett. 34, 254 (1979).

    Google Scholar 

  8. L. D. Major, M.S. thesis, Case Western Reserve University (1977); AFML-TR-78-119.

  9. S. S. Christy and J. B. Condon,J. Electrochem. Soc. 128, 2170 (1982).

    Google Scholar 

  10. C. R. Helms,J. Electrochem, Soc. 129, 1375 (1982).

    Google Scholar 

  11. R. Haul and G. Dumbgen,Z. Electrochem. 66, 636 (1962).

    Google Scholar 

  12. E. W. Sucov,J. Am. Ceram. Soc. 46, 14 (1963).

    Google Scholar 

  13. E. L. Williams,J. Am. Ceram. Soc. 48, 190 (1965).

    Google Scholar 

  14. H. Yinnon, Ph.D. thesis, Case Western Reserve University (1979).

  15. F. J. Norton,Nature (Lond.)191, 701 (1961).

    Google Scholar 

  16. R. L. Meek,J. Am. Ceram. Soc. 56, 341 (1973).

    Google Scholar 

  17. J. D. Cawley, Ph.D. thesis, Case Western Reserve University (1984).

  18. H. Schmalzried,Z. Physik. Chem. N.F. 38, 87 (1963).

    Google Scholar 

  19. M. A. Hopper, R. A. Clarke, and L. Young,J. Electrochem. Soc. 122, 1216 (1975).

    Google Scholar 

  20. A. R. Cooper,Trans. Faraday Soc. 58, 2468 (1962).

    Google Scholar 

  21. S. J. Farlow,Partial Differential Equations for Scientists and Engineers (Wiley, New York, 1982), p. 58.

    Google Scholar 

  22. J. S. Crank,The Mathematics of Diffusion, 2nd ed. (Oxford University Press, London, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cawley, J.D., Halloran, J.W. & Cooper, A.R. Oxygen-18 tracer study of the passive thermal oxidation of silicon. Oxid Met 28, 1–16 (1987). https://doi.org/10.1007/BF00666468

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666468

Key words

Navigation