Skip to main content
Log in

The internal oxidation of Nb-Hf alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The internal oxidation of some binary Nb-Hf and several commercial Nb alloys containing Hf was studied at 1568 and 1755°C in oxygen pressures ranging from 5×10 −5 to 1×10−3 torr.The reaction kinetics were linear, suggesting that diffusion of oxygen in the substrate was not rate-controlling. The dependence of the reaction rate on oxygen pressure was linear also. Well-defined reaction fronts were observed at higher pressures and the lower temperature, whereas ill-defined fronts occurred at lower pressures and at the higher temperature. The solubility product was much higher than normally encountered in Wagnerian-type behavior and gave rise to varying solute content across the internal-reaction zone. The solute-concentration profiles (EPMA/WDS) of the matrix between particles exhibited a sigmoidal shape for well-defined reaction fronts, whereas the profiles showed a gradual decrease in solute with distance near the front for ill-defined fronts, dropping fairly abruptly at the metal/gas interface. The solute concentration never reached zero at the surface for any condition studied. In contrast to classical, Wagnerian behavior, solute continued to precipitate out after the reaction zone had passed, leading to a variation in the mole fraction of oxide in the zone. SEM/EDXA and XRD showed that precipitation occurred by the formation of “precursors” (Hf-rich regions surrounded by Hf-depleted regions), followed by precipitation of tetragonalHfO2,which in some cases transformed to monoclinicHfO2 and subsequently coarsened. The precipitate morphology varied with solute concentration, temperature, oxygen pressure, and location within the reaction zone. High temperature and high oxygen pressure favored a Widmanstätten structure, whereas low temperature and low oxygen pressure favored a spheroidal precipitate structure. Widmanstätten plates were observed to “spheroidize” at longer times, suggesting that the interfacial energy between particles and matrix was very high. The presence of a small amount of Y (0.11 w/o in C129) always resulted in spheroidal particles. It appears that Y markedly increased the particle/matrix interfacial energy. Microhardness profiles showed decreasing values with distance into the sample for some conditions and alloys but increasing values in other cases. Hardness increases in the substrate in advance of the interface showed that oxygen activity did not reach zero at the reaction front, once again contrary to classical behavior but consistent with high solubility products of the oxide. Results are analyzed in terms of oxygen-trapping by reactive solutes as noted in the literature for both lattice-parameter measurements and oxygen diffusivity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Inouye, inRefractory Metal Alloys, I. Machlin, R. T. Begley, and E. D. Weisert, eds. (Plenum Press, New York, 1968), pp. 165–185.

    Google Scholar 

  2. W. Mader,Proceedings of the 46th Annual Meeting of the Electron Microscopy Society of America (1988), p. 730.

  3. W. Mader,Mat. Res. Soc. Symp. Proc. 82, 403 (1987).

    Google Scholar 

  4. M. Kuwabara, J. C. H. Spence, and M. Ruhle,Proceedings of the 46th Annual Meeting of the Electron Microscopy Society of America (1988), p. 732.

  5. T. T. Ye, W. I. Botta, F. P. A. Labun, J. W. Christian, and G. Taylor,Acta Met. 33, 477 (1985).

    Google Scholar 

  6. A. D. Korotayev, A. N. Tyumentsev, Yu. P. Pinzhin, K. A. Markov, N. G. Minayev, and A. A. Safonov,Phys. Met. Metall. 54, 183 (1982).

    Google Scholar 

  7. H. Inouye, inProceedings of the International Symposium, Harry Stuart, ed. (AIME, 1984), p. 615.

  8. A. D. Korotayev, A. N. Tyumentsev, Yu. P. Pinzhin, Yu. R. Kolobov, M. G. Glazunov, K. A. Markov, and N. G. Minayeu,Phys. Met. Metall. 50, 92 (1980).

    Google Scholar 

  9. R. M. Bonesteel, D. J. Rowcliffe, and T. E. Tietz,Proceedings of the International Conference on the Strength of Metals and Alloys (Trans. Japanese Inst. Metals),9, 597 (1968).

    Google Scholar 

  10. A. C. Barber and P. H. Morton,High Temperature Refractory Metals, R. W. Fountain, Joseph Malt, and L. S. Richardson, eds. (Gordon and Breach, New York, 1964), p. 391.

    Google Scholar 

  11. H. Inouye,Refractory Metals and Alloys III.: Applied Aspects, Robert I. Jaffee, ed. (Gordon and Breach, New York, 1963), p. 871.

    Google Scholar 

  12. M. S. Tsirlin,Protection of Metals 4, 186 (1968), translated fromZashchita Metallov, pp. 20–27.

    Google Scholar 

  13. M. S. Tsirlin,Protection of Metals 5, 596 (1969), translated fromZashchita Metallov, pp. 682–689.

    Google Scholar 

  14. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  15. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  16. J. H. Swisher,Oxidation of Metal and Alloys, D. L. Douglass, ed. (ASM, Metals Park, Ohio 1971), p. 235.

    Google Scholar 

  17. J. L. Meijering, inAdvances in Materials Research, Vol. 5, H. Herman, ed. (Wiley, New York, 1971), p. 1.

    Google Scholar 

  18. G. R. Laflamme and J. E. Mortal,Acta Metall. 26, 1791 (1978).

    Google Scholar 

  19. H. J. Christ, H. Biermann, F. C. Rizzo, and H. G. Sockel,Oxid. Met. 32, 111 (1989).

    Google Scholar 

  20. A. Taylor and N. J. Doyle,J. Less-Common Met. 13, 331 (1967).

    Google Scholar 

  21. D. B. Marshall and M. R. James,J. Am. Ceram. Soc. 69, 215 (1986).

    Google Scholar 

  22. R. C. Garvie, R. H. J. Hannink, and M. V. Swain,J. Mater. Sci. Lett. 1, 437 (1982).

    Google Scholar 

  23. N. Birks and G. H. Meier,Introduction to High Temperature Oxidation of Metals (Edward Arnold, 1983), p. 99.

  24. G. M. Ault and N. M. Burte,Oxide Dispersion Strengthening, Vol. 20 (Gordon and Breach, New York, 1968).

    Google Scholar 

  25. Alloy Digest data sheet on Columbium WC-103 dated September 1967.

  26. G. R. Laflamme and J. E. Morral,Acta Met. 26, 1791 (1978).

    Google Scholar 

  27. E. K. Ohriner and J. E. Morral,Scripta Met. 13, 9 (1979).

    Google Scholar 

  28. W. W. Smeltzer,Oxidation Mechanisms of Metals and Associated Mass Transport, M. A. Dayananda, S. J. Rothman, and W. E. King, eds. (Met. Soc. AIME, 1987).

  29. G. Bohm and M. Kahlweit,Acta Met. 12, 641 (1964).

    Google Scholar 

  30. J. Megusar and G. H. Meier,Met Trans. A 7A, 1133 (1976).

    Google Scholar 

  31. R. J. Lauf and C. J. Alstetter,Acta Met. 27, 1157 (1979).

    Google Scholar 

  32. E. Albert, E. Fromm, and R. Kircheim,Met. Trans. A 14A, 2117 (1983).

    Google Scholar 

  33. R. C. Frank, R. J. Lauf, and C. J. Alstetter,Met. Trans. A 13A, 539 (1982).

    Google Scholar 

  34. A. Taylor and N. J. Doyle,J. Less-Common Met. 13, 313 (1967).

    Google Scholar 

  35. A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle,J. Am. Cer. Soc. 65, 642 (1982).

    Google Scholar 

  36. I.-W. Chen and Y.-H. Chaio,Acta Met. 31, 1627 (1983).

    Google Scholar 

  37. I.-W. Chen and Y.-H. Chaio,Advances in Ceramics 12, 33 (1984).

    Google Scholar 

  38. G. M. Wolten,J. Am. Cer. Soc. 46, 418 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corn, D.L., Douglass, D.L. & Smith, C.A. The internal oxidation of Nb-Hf alloys. Oxid Met 35, 139–173 (1991). https://doi.org/10.1007/BF00666504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666504

Key words

Navigation