Skip to main content
Log in

Morphological and microchemical phenomena in the high-temperature oxidation of binary Al-Li alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation behavior of binary Al-Li alloys has been characterized by scanning electron microscopy and secondary ion mass spectrometry in order to understand the mechanism of rapid oxidation in these alloys and to correlate the oxide morphology to its microchemistry. The oxide scale developed on polished specimens during short exposures in air at 530°C shows characteristic nodules that usually nucleate at grain boundaries. Examination of the alloy surface after removal of the oxide layer shows that the initial growth of the oxide nodules occurs laterally in addition to thickening normal to the oxide/alloy interface. Microchemical analysis of the oxide film with a scanning ion microprobe reveals a thick Li-oxide layer at the oxide/gas interface indicating preferential oxidation of Li at the free surface; the rest of the oxide film is composed of both Al- and Li-rich oxides, probably Li2O and LiAlO2 The presence of trace impurities (K, Na, F, and Cl) in the oxide scale was also detected. A microstructural model for the development of the oxide film in the Al-Li system is presented on the basis of both morphological and microanalytical data obtained in this study; this new model is compared with existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Sanders, Jr. and E. A. Starke, Jr., eds.,Proc. 5th Int. Aluminum-Lithium Conf. (Williamsburg, Virginia, Materials and Component Engineering Publications, Birmingham, U.K., 1989).

    Google Scholar 

  2. P. G. Partridge,Int. Mater. Rev. 35, 37 (1990).

    Google Scholar 

  3. D. J. Field, E. P. Butler, and G. M. Scamans, inAluminum-Lithium Alloys, T. H. Sanders, Jr. and E. A. Starke, Jr., eds. (TMS-AIME, Warrendale, Pennsylvania, 1981), p. 325.

    Google Scholar 

  4. D. J. Field, G. M. Scamans, and E. P. Butler, inAluminum-Lithium Alloys II, T. H. Sanders, Jr. and E. A. Starke, Jr., eds. (TMS-AIME, Warrendale, Pennsylvania, 1984), p. 657.

    Google Scholar 

  5. J. M. Papazian, R. L. Schulte, and P. N. Adler,Metall. Trans. A 17, 635 (1986).

    Google Scholar 

  6. M. Ahmad,Metall. Trans. A 18, 681 (1987).

    Google Scholar 

  7. S. Fox, H. M. Flower, and D. S. McDarmaid,Scripta Metall. 20, 71 (1986).

    Google Scholar 

  8. M. Burke and J. M. Papazian, inAluminium-Lithium Alloys III, C. Baker, P. J. Gregson, S. J. Harris, and C. J. Peel, eds. (Inst. of Metals, London, 1986), p. 66.

    Google Scholar 

  9. N. Thorne, A. Dubus, J. M. Lang, F. Degreve, and P. Mayer, in4th Int. Aluminium-Lithium Conf., G. Champier, B. Dubost, D. Miannay, and L. Sabetay, eds. (Suppl.J. Physique, Colloq. no. 3, Paris, 1987), p. 521.

  10. D. J. Field, G. M. Scamans, and E. O. Butler, inEnvironmental Degradation of Engineering Materials in Aggressive Environments (Virginia Polytechnic Institute, Blacksburg, Virginia, 1981), p. 393.

    Google Scholar 

  11. K. Wefers and F. A. Mozelewski,Aluminium 64, 295 (1988).

    Google Scholar 

  12. P. G. Partridge and N. C. Chadbourne,J. Mater. Sci. 24, 2765 (1989).

    Google Scholar 

  13. E. R. Maddrell, R. A. Ricks, and E. R. Wallach, inProc. 5th Int. Aluminum-Lithium Conf., T. H. Sanders, Jr. and E. A. Starke, Jr., eds. (Williamsburg, Virginia, Materials and Component Engineering Publications, Birmingham, U.K., 1989), p. 451.

    Google Scholar 

  14. D. B. Williams, R. Levi-Setti, J. M. Chabala, Y. L. Wang, and D. E. Newbury,Appl. Surf. Sci. 37, 78 (1989).

    Google Scholar 

  15. D. B. Williams, R. Levi-Setti, J. M. Chabala, Y. L. Wang, D. E. Newbury, and K. K. Soni, inProc. 5th Int. Aluminum-Lithium Conf., T. H. Sanders, Jr. and E. A. Starke, Jr., eds. (Williamsburg, Virginia, Materials and Component Engineering Publications, Birmingham, U.K., 1989), p. 605.

    Google Scholar 

  16. K. K. Soni, D. B. Williams, J. M. Chabala, R. Levi-Setti, and D. E. Newbury, inElectron Microscopy 1990, Vol. 2, L. D. Peachey and D. B. Williams, eds. (San Francisco Press, San Francisco, California, 1990), p. 314.

    Google Scholar 

  17. M. Textor and R. Grauer,Corros. Sci. 23, 41 (1983).

    Google Scholar 

  18. F. Degreve and J. M. Lang,Applied Materials Characterization, inMat. Res. Soc. Symp. Proc., Vol. 48 (Materials Research Society, Pittsburgh, Pennsylvania, 1985), p. 241.

    Google Scholar 

  19. R. Levi-Setti, J. M. Chabala, and Y. L. Wang,Ultramicroscopy 24, 97 (1988).

    Google Scholar 

  20. J. M. Chabala, R. Levi-Setti, and Y. L. Wang, inMicrobeam Anal.—1989, P. E. Russell, ed. (San Francisco Press, San Francisco, California, 1989), p. 586.

    Google Scholar 

  21. B. Onay and R. A. Rapp,Oxid. Met. 29, 473 (1988).

    Google Scholar 

  22. J. Oudar,Int. Met. Rev. 23, 57 (1978).

    Google Scholar 

  23. A. Rahmel, G. C. Wood, P. Kofstad, and D. L. Douglass,Oxid. Met. 23, 253 (1985).

    Google Scholar 

  24. A. T. Fromhold,Theory of Metal Oxidation, Vol. 1, Chap. 1 (Elsevier, New York, 1976).

    Google Scholar 

  25. F. Gronlund and P. J. Moller,Surf. Sci. 184, 530 (1987).

    Google Scholar 

  26. L. E. Murr,Interfacial Phenomena in Metals and Alloys (Addison-Wesley Publishing Co., Reading, Massachusetts, 1975), p. 187.

    Google Scholar 

  27. E. A. Brandes, ed.,Smithells Metals Reference Book (Butterworths, London, 1983).

  28. E. T. Turkdogan,Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soni, K.K., Williams, D.B., Chabala, J.M. et al. Morphological and microchemical phenomena in the high-temperature oxidation of binary Al-Li alloys. Oxid Met 36, 361–378 (1991). https://doi.org/10.1007/BF01151586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151586

Key Words

Navigation