Skip to main content
Log in

High-temperature corrosion in mixed gas environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Scaling reactions between pure metals and multiple oxidant gases are reviewed briefly. It is recognized that elemental oxidant activities are usually so low that the actual reactant species are heteronuclear molecules such as SO2, CO2, etc. The formation of duplex, sulfide-oxide scales on iron and manganese, even when sulfide is unstable with respect to oxide, is attributed to direct reaction with SO2. The persistence of the metastable sulfide is due to its preservation by the rapidly growing scale. The reaction of pure chromium with a number of mixed gases is also discussed. The continued formation of carbides and nitrides beneath an external Cr2O3 scale layer indicates that the latter material is permeable to gas species. Interaction among different gas species is observed, and is attributed to selective adsorption on internal surfaces within the chromium oxide. New work on the reaction of alloys with mixed gases is reported. Several austenitic heat-resistant alloys were exposed at 1000°C to gases containing one, two or all of the oxidants carbon, sulfur and oxygen. Gases containing two or more oxidants produced multiple zones of internal precipitation. The precipitates were chromium-rich oxides, sulfides and carbides arranged in order of thermodynamic stability: oxides beneath the external scale, carbides deepest within the alloys and sulfides in an intermediate zone overlapping the oxide zone. Each precipitate zone widened according to parabolic kinetics. This finding confirms the as yet untested prediction made by J. L. Meijering in 1971. However, the rate at which a particular zone grows changes according to presence of other oxidants. Interactions between the oxidants can be large and reaction rates are currently not predictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Snavely and C. L. Faust,J. Electrochem. Soc. 97, 99 (1950).

    Google Scholar 

  2. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 903 (1969).

    Google Scholar 

  3. E. A. Gulbransen and S. A. Jansson, inProceedings of the Symposium on High Temperature Metallic Corrosion by Sulfur and its Compounds, Z. A. Foroulis, ed. (Electrochemical Society Inc., New York, 1970), Vol. 3.

    Google Scholar 

  4. N. Birks, inProceedings of the Symposium on High Temperature Gas-Metal Reactions in Mixed Environments, S. A. Jansson and Z. A. Foroulis, eds. (Met. Soc. AIME, New York, 1973), p. 322.

  5. A. Rahmel,Corros. Sci. 13, 125 (1973).

    Google Scholar 

  6. A. Rahmel, inProceedings of the Symposium on High Temperature Gas-Metal Reactions in Mixed Environments, S. A. Jansson and Z. A. Foroulis, eds. (Met. Soc. AIME, New York, 1973), p. 284.

  7. A. Rahmel,Oxid. Met. 9, 401 (1975).

    Google Scholar 

  8. P. Kofstad, inProceedings of the 8th Symposium on the Reactivity of Solids, J. Wood, O. Lindqvist, C. Helgesson, and N. G. Vannerberg, eds. (Plenum Press, New York, 1976). p. 15.

    Google Scholar 

  9. N. Birks, inProceedings of the Symposium on Properties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit, eds. (Electrochemical Society, 1976), Vol. N.77-1, p. 215.

  10. W. F. Chu and A. Rahmel,Rev. High Temp. Mater. 4, 139 (1979).

    Google Scholar 

  11. F. Gesmundo,Oxid. Met. 13, 237 (1979).

    Google Scholar 

  12. W. L. Worrell, US-Japan Joint Seminar on Defects and Diffusion in Solids, 1979, p. 155.

  13. C. S. Giggins and F. S. Pettit,Oxid. Met. 14, 363 (1980).

    Google Scholar 

  14. K. Natesan, inProceedings of the Spring Residential Conference on Environmental Degradation of High Temperature Materials, Series 3, (Institution of Metallurgists, London, 1980), Vol. 1, No. 13, pp. 1–12.

    Google Scholar 

  15. K. N. Strafford, inProceedings of the Spring Residential Conference on Environmental Degradation of High Temperature Materials, Series 3, (Institution of Metallurgists, London, 1980), Vol. 1, No. 13, p. 5–1.

    Google Scholar 

  16. S. Mrowec, in Proceedings of the 8th International Congress of Metallic Corrosion, DECHEMA, Frankfurt, Vol. 3, 1981, p. 2110.

  17. N. Birks and G. H. Meier, inProceedings of the Conference on Corrosion-Erosion-Wear of Materials in Emerging Fossil Energy Systems, A. V. Levy, ed. (NACE, Houston, 1982), p. 1.

    Google Scholar 

  18. K. N. Strafford and P. J. Hunt, inProceedings of the International Conference on High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), p. 380.

    Google Scholar 

  19. G. H. Meier, N. Birks, F. S. Pettit, and C. S. Giggins, inProceedings of the International Conference on High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), p. 327.

    Google Scholar 

  20. F. Fueki and K. Fuda, in Proceedings of the 3rd JIM International Symposium on High Temperature Corrosion of metals and Alloys, Japan Institute of Metals, Sendai, 1983, p. 435.

  21. H. J. Grabke, inProceedings of a Seminar on High Temperature Materials Corrosion in Coal Gasification Atmospheres, J. F. Norton, ed. (Elsevier Applied Science, London, 1984), p. 59.

    Google Scholar 

  22. D. J. Srolovitz and T. A. Ramanarayanan,Oxid. Met. 22, 247 (1984).

    Google Scholar 

  23. M. F. Stroosnijder and W. J. Quadakkers,High Temp. Technol. 4, 83 (1986).

    Google Scholar 

  24. M. F. Stroosnijder and W. J. Quadakkers,High Temp. Technol. 4, 141 (1986).

    Google Scholar 

  25. F. Gesmundo, D. J. Young, and S. K. Roy,High Temp. Mater. Process. 8, 149 (1989).

    Google Scholar 

  26. T. Flatley and N. Birks,J. Iron Steel Inst. 209, 523 (1971).

    Google Scholar 

  27. G. McAdam and D. J. Young,Oxid. Met. 37, 281 (1992).

    Google Scholar 

  28. G. McAdam and D. J. Young,Oxid. Met. 37, 301 (1992).

    Google Scholar 

  29. J. Unsworth and D. J. Young, University of New South Wales, unpublished research (1994).

  30. K. Kurokawa, T. Narita, and K. Nishida, in Proc. 34d JIM Int. Symp. High Temperature Corrosion of Metals and Alloys, Japan Institute of Metals, Sendai, 1983, p. 465.

  31. M. Danielewski and K. Natesan,Oxid. Met. 12, 227 (1977).

    Google Scholar 

  32. C. De Asmundis, F. Gesmundo, and C. Bottino,Oxid. Met. 14, 351 (1980).

    Google Scholar 

  33. H. Hindam and D. P. Whittle,Corrosion 38, 32 (1982).

    Google Scholar 

  34. M. LaBranche, A. Garratt-Reed, and G. J. Yurek,J. Electrochem. Soc. 130, 2405 (1983).

    Google Scholar 

  35. G. J. Yurek, M. H. LaBranche, and Y. K. Kim, inHigh Temperature Energy Systems, M. Rothman, ed. (Met. Soc. AIME, 1985), p. 295.

  36. H. S. Hsu,Oxid. Met. 28, 213 (1987).

    Google Scholar 

  37. D. J. Baxter and K. Natesan,Oxid. Met. 31, 305 (1989).

    Google Scholar 

  38. X. G. Zheng and D. J. Young,Oxid. Met. 42, 163 (1994).

    Google Scholar 

  39. X. G. Zheng and D. J. Young,Corros. Sci. 36, 1999 (1994).

    Google Scholar 

  40. I. Wolf and H. J. Grabke,Solid State Commun. 54, 5 (1985).

    Google Scholar 

  41. R. G. Olsen and E. T. Turkdogan,Met. Trans. 5, 21 (1974).

    Google Scholar 

  42. H. J. Grabke,Mater. Sci. Eng. 42, 91 (1980).

    Google Scholar 

  43. J. Barnes, J. Corish, and J. F. Norton,Oxid. Met. 26, 333 (1986).

    Google Scholar 

  44. T. A. Ramanarayanan,Mater. Sci. Eng. 87, 113 (1987).

    Google Scholar 

  45. A. V. Seybolt and D. H. Haman,Trans. Met. Soc. AIME 230, 1294 (1964).

    Google Scholar 

  46. C. Wagner,Z. Elektrochem. 63, 772 (1950).

    Google Scholar 

  47. R. A. Rapp,Corrosion 21, 730 (1965).

    Google Scholar 

  48. J. H. Swisher, inOxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, OH, 1971).

    Google Scholar 

  49. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 903 (1969).

    Google Scholar 

  50. J. A. Colwell and R. A. Rapp,Met. Trans. A 17A, 1065 (1986).

    Google Scholar 

  51. C. J. Spengler and R. Viswanathan,Met. Trans. 3, 161 (1972).

    Google Scholar 

  52. J. L. Meijering, inAdvances in Materials Research, 5th ed., H. Herman, ed. (Wiley-Interscience, New York, 1971).

    Google Scholar 

  53. S. K. Bukovinsky, K. R. L. Thompson, and D. J. Young, Proc. Annual IMMA Conference, vol. 2, paper 11-1, Inst. Metals and Materials Aust., Melbourne, 1990.

  54. S. Watson, P. Munroe, and D. J. Young, University of New South Wales, unpublished research (1994).

  55. K. Tjokro, D. J. Young, R. E. Johanssen, and J. D. Redmond, Corrosion 91, paper 548, NACE, Houston, TX, 1991.

    Google Scholar 

  56. T. Wada, H. Wada, J. F. Elliott, and J. Chipman,Met. Trans. 2, 2199 (1971).

    Google Scholar 

  57. S. K. Bose and H. J. Grabke,Z. Metall. 69, 8 (1978).

    Google Scholar 

  58. C. Wagner,Thermodynamics of Alloys (Addison-Wesley, Reading, MA, 1952), p. 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D.J., Watson, S. High-temperature corrosion in mixed gas environments. Oxid Met 44, 239–264 (1995). https://doi.org/10.1007/BF01046729

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046729

Key Words

Navigation