Skip to main content
Log in

Lung liquid and protein exchange: The four inhomogeneities

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

William of Ockham, 14th-century scholastic philosopher at Oxford and Munich, emphasized the principle of economy, “pleurality is not to be supposed without necessity” (Ockham's razor).Necessity is the key word. In the modeling of steady-state lung liquid and protein exchange, the desire for simplicity has sometimes outweighed good judgment. In fact, we and others have shown that simple models do not work. It is necessary to include several forms of inhomogeneity. The air-filled lung showsregional (top to bottom) variations of mass, microvascular pressure, and perimicrovascular protein concentration. Normally, the small longitudinal (arterioles to venules) gradient of microvascular and perimicrovascular pressures is not a major concern, but in nonuniform disease processes, such as microembolism, longitudinal inhomogeneity, andparallel inhomogeneity are dominant.Multiple pores should also be considered a form of inhomogeneity. The effect on liquid and protein exchange, when plasma protein concentration or microvascular pressure change, can be readily explained using pore heterogeneity. The model I am currently using consists of a large number of discrete compartments (18), rather than a continuous distribution. We have recently identified a fifth inhomogeneity, which is that lung lymph flow might not always represent steady-state transvascular filtration because interstitial liquid may leak through the pleura or along the bronchovascular liquid cuffs into the mediastinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, R.K., W. Kirk, C. Pitts, and J. Butler. Extra-alveolar vessel fluid filtration coefficients in excised andin situ canine lobes.J. Appl. Physiol. 59:1555–1559, 1985.

    CAS  PubMed  Google Scholar 

  2. Albertine, K.H., E.L. Schultz, and N.C. Staub. Effect of lung height on protein concentration in sheep lung lymphatics.Fed. Proc. 42:1272, 1983.

    Google Scholar 

  3. Albertine, K.H., J.P. Wiener-Kronish, K. Koike, and N.C. Staub. Quantification of damage by air emboli to lung microvessels in anesthetized sheep.J. Appl. Physiol. 57:1360–1368, 1984.

    CAS  PubMed  Google Scholar 

  4. Albertine, K.H., J.P. Wiener-Kronish, P.J. Roos, and N.C. Staub. Structure, blood supply, and lymphatic vessels of the sheep's visceral pleura.Am. J. Anat. 165:277–294, 1982.

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharya, J., M.A. Gropper, and J.M. Shepard. Measurement of filtration rate in single lung microvessels by the split-drop technique.Microvasc, Res. 29:208, 1985.

    Google Scholar 

  6. Bhattacharya, J., M.A. Gropper and N.C. Staub. Interstitial fluid pressure gradient measured by micropuncture in excised dog lung.J. Appl. Physiol. 56:271–277, 1984.

    CAS  PubMed  Google Scholar 

  7. Bhattacharya, J. and N.C. Staub. Direct measurement of microvascular pressures in the isolated perfused dog lung.Science 210:327–328, 1980.

    CAS  PubMed  Google Scholar 

  8. Blake, L.H. and N.C. Staub. Pulmonary vascular transport in sheep: A mathematical model.Microvasc. Res. 12:197–220, 1976.

    Article  CAS  PubMed  Google Scholar 

  9. Boren, H.G. Alveolar fenestrae. Relationship to the pathology and pathogenesis of pulmonary emphysema.Am. Rev. Resp. Dis. 85:328–344, 1962.

    CAS  PubMed  Google Scholar 

  10. Broaddus, V.C., J.P. Wiener-Kronish, E.H. Jerome, N. Matsumoto, K. Miyamoto, and N.C. Staub. Pleural effusions in volume overload pulmonary edema.Fed. Proc. 45:286, 1986.

    Google Scholar 

  11. Bruderman, I., K. Somers, W.K. Hamilton, W.H. Tooley, and J. Butler. Effect of surface tension on circulation in the excised lungs of dogs.J. Appl. Physiol. 19:707–714, 1964.

    CAS  PubMed  Google Scholar 

  12. Chen, P., J.U. Raj, and J. Rohrbach. Segmental vascular resistance in lungs of newborn lambs: influence of vascular tone.Fed. Proc. 45:553, 1986.

    Google Scholar 

  13. Comroe, J.H., Jr.Physiology of Respiration. Yearbook. Chicago, 2nd edition, 1974.

    Google Scholar 

  14. Davson, H.A Textbook of General Physiology, 4th edition. William & Wilkins, Baltimore, 1970, pp. 519–520.

    Google Scholar 

  15. Dodek, P.D., T.W. Rice, M.R. Bonsignore, S. Yamada, and N.C. Staub. Effects of plasmapheresis and of hypoproteinemia on lung liquid conductance in awake sheep.Circ. Res. 58:269–280, 1986.

    CAS  PubMed  Google Scholar 

  16. Erdmann, A.J., T.R. Vaughan, K.L. Brigham, W.C. Woolverton, and N.C. Staub. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep.Circ. Res. 37:271–284, 1975.

    PubMed  Google Scholar 

  17. Fein, A., R.E. Grossman, J.G. Jones, E. Overland, L. Pitts, J.F. Murray, and N.C. Staub. The value of edema fluid protein measurement in patients with pulmonary edema.Am. J. Med. 67:32–38, 1979.

    Article  CAS  PubMed  Google Scholar 

  18. Feisal, K.A., J. Soni, and A.B. Dubois. Pulmonary arterial circulation time, pulmonary arterial blood volume and the ratio of gas to tissue volume, in the lungs of dogs.J. Clin. Invest. 41:390–400, 1962.

    CAS  PubMed  Google Scholar 

  19. Fike, C.D., S.J. Lai-Fook, and R.D. Bland. Microvascular pressures measured by direct micropuncture in isolated, perfused newborn rabbit lungs.Fed. Proc. 45:1128, 1986.

    Google Scholar 

  20. Granger, D.N. and A.E. Taylor. Permeability of intestinal capillaries to endogenous macromolecules.Am. J. Physiol. 238:H457-H464, 1980.

    CAS  PubMed  Google Scholar 

  21. Groome, L.J. and G.T. Kinasewitz. Spatial heterogeneity and microscopic fluid exchange.Microvasc. Res., in press, 1986.

  22. Gropper, M.A., J. Bhattacharya, A. Eaton, and N.C. Staub. Filtration rate in relation to alveolar pressure in isolated dog lung.Fed. Proc. 43:1032, 1984.

    Google Scholar 

  23. Gropper, M.A., J. Shepard, and N.C. Staub. Interstitial albumin concentrations during extravascular “arterial” and “venous” leakage in zone I dog lung lobes.Fed. Proc. 45:1159, 1986.

    Google Scholar 

  24. Hakim, T.S., R.P. Michel, and H.K. Chang. Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion.J. Appl. Physiol. 52:710–715, 1982.

    CAS  PubMed  Google Scholar 

  25. Harris, T.R. and R.J. Roselli. A theoretical model of protein, fluid and small molecule transport in the lung.J. Appl. Physiol. 50:1–14, 1981.

    PubMed  Google Scholar 

  26. Iliff, L.D. Extra-alveolar vessels and edema development in excised dog lungs.Circ. Res. 28:524–532, 1971.

    Google Scholar 

  27. Kramer, G.C., R.A. Gunther, and E.M. Renkin. Chronic hypoproteinemia increases lymph flow and decreases protein permeability in sheep lung.Fed. Proc. 42:732, 1983.

    Google Scholar 

  28. Kramer, G.C., B.A. Harms, R.A. Gunther, E.M. Renkin, and R.H. Demling. The effects of hypoproteinemia on blood to lymph fluid transport in sheep lung.Circ. Res. 49:1173–1180, 1981.

    CAS  PubMed  Google Scholar 

  29. Levitt, D.G. General continium analysis of transport through pores I. Proof of Onsager's reciprocity postulate for uniform pore.Biophys. J. 15:533–551, 1975.

    CAS  PubMed  Google Scholar 

  30. Macklin, C.C. Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum.Arch. Int. Med. 64:913–926, 1939.

    Google Scholar 

  31. McNamee, J.E. and N.C. Staub. Pore models of sheep lung microvascular barrier using new data on protein tracers.Microvasc. Res. 18:229–244, 1979.

    Article  CAS  PubMed  Google Scholar 

  32. Mead, J. and J.L. Whittenberger. Lung Inflation and Hemodynamics. IN:Handbook of Physiology, Respiration, Vol. I (W. Fenn and H. Rahn, eds). Am. Physiol. Soc., Washington, 1964, pp. 477–486.

    Google Scholar 

  33. Mitzner, W. and J.L. Robotham. Distribution of interstitial compliance and filtration coefficient in canine lung.Lymphology 12:140–148, 1979.

    CAS  PubMed  Google Scholar 

  34. Nagasaka, Y., J. Bhattacharya, S. Nanjo, M.A. Gropper, and N.C. Staub. Micropuncture measurement of lung microvascular pressure profile during hypoxia in cats.Circ. Res. 54:90–95, 1984.

    CAS  PubMed  Google Scholar 

  35. Nicolaysen, G. and A. Hauge. Determinants of transvascular fluid shifts in zone I lungs.J. Appl. Physiol. 48:256–264, 1980.

    CAS  PubMed  Google Scholar 

  36. Ohkuda, K., K. Nakahara, A. Binder, and N.C. Staub. Venous air emboli in sheep: Reversible increase in lung microvascular permeability.J. Appl. Physiol. 51:887–894, 1981.

    CAS  PubMed  Google Scholar 

  37. Parker, R.E., and A.E. Taylor. Comparison of capsular and intra-alveolar fluid pressures in the lung.J. Appl. Physiol. 52:1444–1452, 1982.

    CAS  PubMed  Google Scholar 

  38. Parker, R.E., R.J. Roselli, and K.L. Brigham. Effects of prolonged elevated microvascular pressure on lung fluid balance in sheep.J. Appl. Physiol. 58:869–875, 1985.

    CAS  PubMed  Google Scholar 

  39. Raj, J.U., R. Sheffield, R.D. Bland, and S.J. Lai-Fook. Microvascular pressure in non-edematous and edematous rabbit lungs.Fed. Proc. 43:514, 1984.

    Google Scholar 

  40. Renkin, E.M., P.D. Watson, C.H. Sloop, W.M. Joyner, and F.E. Curry. Transport pathways for fluid and large molecules in microvascular endothelium of dog's paw.Microvasc. Res. 14:205–214, 1977.

    CAS  PubMed  Google Scholar 

  41. Snashall, P.D., K. Nakahara, and N.C. Staub. Estimation of perimicrovascular fluid pressure in isolated perfused dog lung lobes.J. Appl. Physiol. 46:1003–1010, 1979.

    CAS  PubMed  Google Scholar 

  42. Staub, N.C. Effects of alveolar surface tension on the pulmonary vascular bed.Japan Heart J. 7:386–399, 1966.

    CAS  Google Scholar 

  43. Staub, N.C. Pulmonary edema.Physiol. Rev. 54:678–811, 1974.

    CAS  PubMed  Google Scholar 

  44. Staub, N.C. Non-uniform liquid filtration and protein permeability in lung microvascular exchange dynamics.Proc. Intern. Union Physiol. Sci. 15:487, 1983.

    Google Scholar 

  45. Staub, N.C. A non-uniform model appears necessary to explain microvascular liquid and protein exchange in lung air microemboli.Int. J. Microcirc. 3:348, 1984.

    Google Scholar 

  46. Taylor, A.E. and B. Rippe. Pulmonary edema. IN:Physiology of Membrane Disorders (T. Andreoli, J. Hoffy, D. Fanestil, and S. Schultz, eds). Plenum Publication Co., 1986, pp. 1025–1039.

  47. Taylor, A.E., J.C. Parker, P.R. Kvietys, and M.A. Perry. The pulmonary interstitium in capillary exchange.Ann. NY Acad. Sci. 348:146–165, 1982.

    Google Scholar 

  48. Ueda, G. The permeability characteristics of high-altitude pulmonary edema model. IN:Progress in Microcirculation Research (F.C. Courtice, D.G. Garlick, and M.A. Perry, eds), Sydney, Australia, 1984, pp. 472–478.

    Google Scholar 

  49. West, J.B., C.T. Dollery, and A. Naimark. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressure.J. Appl. Physiol. 19:713–724, 1964.

    CAS  PubMed  Google Scholar 

  50. Wiederhielm, C.A. Dynamics of capillary fluid exchange: non-linear computer simulation.Microvasc. Res. 18:48–82, 1979.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staub, N.C. Lung liquid and protein exchange: The four inhomogeneities. Ann Biomed Eng 15, 115–126 (1987). https://doi.org/10.1007/BF02364048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364048

Keywords

Navigation